MAY 2015

SACRAMENTO VALLEY WATER QUALITY COALITION

Monitoring and Reporting Program

Annual Monitoring Report 2014

Prepared by LARRY WALKER ASSOCIATES

This page intentionally left blank

May 1, 2015

Pamela Creedon, Executive Officer Central Valley Regional Water Quality Control Board 11020 Sun Center Drive Rancho Cordova, CA 95670-6114

RE: 2014 Annual Monitoring Report, 2014 Management Plan Progress Report, and 2014 Chlorpyrifos Diazinon TMDL Compliance Monitoring Report

Dear Ms. Creedon:

Attached are three annual reports for the Sacramento Valley Water Quality Coalition (Coalition):

- The 2014 Annual Monitoring Report (AMR) for the Coalition's Monitoring and Reporting Program (MRP). The Coalition has developed and implemented a MRP to meet the requirements of the Waste Discharge Requirements General Order for Growers within the Sacramento River Watershed that are Members of a Third-Party Group (R5-2014-0030) (WDR). The scope of the MRP and the sampling and analytical methods used in the 2014 Coalition Monitoring have been approved by the Central Valley Regional Water Quality Control Board. The AMR summarizes the sampling results and analysis, provides interpretation of the data, and documents the outreach to Coalition landowners.
- The 2014 Management Plan Progress Report (MPPR). The Coalition has implemented the monitoring, reporting, outreach, analysis, and evaluations needed to assess our progress toward the goals of the Coalition's approved Management Plan. The MPPR summarizes this information and the progress toward meeting these goals.
- The Management of Chlorpyrifos and Diazinon Discharges to the Sacramento and Feather Rivers and the Sacramento-San Joaquin Delta: 2014 TMDL Compliance Monitoring Report (TMDL Compliance Monitoring Report). The Coalition has implemented the monitoring approved to meet the requirements of the TMDL and conducted analysis and evaluations to assess progress toward the goals of the TMDL. The TMDL Compliance Monitoring Report summarizes the monitoring results and analyses, presents our evaluations and interpretations of the data, and provides our conclusions about progress toward meeting the TMDL's goals.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for knowingly submitting false information, including the possibility of fine and imprisonment for violations." If you or your staff have questions on these reports, please contact me or Bruce Houdesheldt at (916) 442-8333.

Sincerely,

David J. Guy President Northern California Water Association

Cc: Sue McConnell Susan Fregien Lynn Coster Gurbinder Dhaliwal Claus Suverkropp Bruce Houdesheldt SACRAMENTO VALLEY WATER QUALITY COALITION

Monitoring and Reporting Program

Annual Monitoring Report 2014

Prepared by

This page intentionally left blank

Table of Contents

Executive Summary	vi
Summary of Monitoring Program	vi
Trend Analysis	vii
Management Practices and Actions Taken	viii
Response to Exceedances	viii
Conclusions and Recommendations	viii
Introduction	1
Description of the Watershed	
Monitoring Objectives	5
Sampling Site Descriptions	7
Sampling Site Locations and Land Uses	7
Site Descriptions	
Butte/Yuba/Sutter Subwatershed	
Colusa Glenn Subwatershed	
El Dorado Subwatershed	
Lake Subwatershed	
Napa Subwatershed	
Pit River Subwatershed	
Placer/Nevada/South Sutter/North Sacramento Subwatershed	
Sacramento/Amador Subwatershed	
Shasta/Tehama Subwatershed	
Solano Subwatershed	
Upper Feather River Watershed	
Yolo Subwatershed	
Sampling and Analytical Methods	
Sample Collection Methods	
Analytical Methods	
Toxicity Testing and Toxicity Identification Evaluations	
Detection and Quantitation Limits	
Monitoring Results	
Summary of Sample Events Conducted	

Sample Custody	
Quality Assurance Results	
Results of Field and Laboratory QA/QC Analyses	
Summary of Precision and Accuracy	
Completeness	
Tabulated Results of Laboratory Analyses	
Data Interpretation	
Summary of Sampling Conditions	
Assessment of Data Quality Objectives	
Exceedances of Relevant Water Quality Objectives	
Toxicity and Pesticide Results	
Other Coalition-Monitored Water Quality Parameters	
Trend Analysis	
Discussion of Results	
Discussion of Results	
Discussion of Results Summary of initial Spearman's test results	
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken	
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances	
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances Management Plan Status Update	83 84 90 90 90 90 90 90
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances Management Plan Status Update Landowner Outreach Efforts	83 84 90 90 90 90 90 90 91
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances Management Plan Status Update Landowner Outreach Efforts Targeted Outreach Efforts	83 84 90 90 90 90 90 90 91 91
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances Management Plan Status Update Landowner Outreach Efforts Targeted Outreach Efforts General Outreach Efforts	83 84 90 90 90 90 90 90 91 91 91 92
Discussion of Results Summary of initial Spearman's test results Management Practices and Actions Taken Response to Exceedances Management Plan Status Update Management Plan Status Update Landowner Outreach Efforts Targeted Outreach Efforts General Outreach Efforts Summary of Farm Evaluation Data	83 84 90 90 90 90 90 90 91 91 91 92 93

List of Appendices

Appendix A: Field Log Copies and Photos Appendix B: Lab Reports and Chains-of-Custody Appendix C: Tabulated Monitoring Results Appendix D: Exceedance Reports Appendix E: Site-Specific Drainage Maps Appendix F: SVWQC Outreach Materials Appendix G: Trend Analysis Results

List of Tables

Table 1. MRP Annual Monitoring Report Requirements	1
Table 2. Constituents Monitored for the 2014 Monitoring Year	6
Table 3. Monitoring Sites for 2014 Coalition Monitoring	8
Table 4. 2014 Coalition Monitoring Year: Planned Samples, October 2013 – September 2014.	. 18
Table 5. Laboratory Method Detection Limit (MDL) and Quantitation Limit (QL) Data Qualit Objectives for Analyses of Surface Water	
Table 6. Laboratory Method Detection Limit (MDL) and Quantitation Limit (QL) Data Quality Objectives for Analyses of Sediments for the Coalition Monitoring and Reporting Progra Plan	m
Table 7. Sampling for the 2014 Coalition Monitoring Year	
Table 8. Summary of Field Blank Quality Control Sample Evaluations for 2014 Coalition Monitoring	. 37
Table 10. Summary of Lab Control Spike Results for 2014 Coalition Monitoring	. 39
Table 11. Summary of Surrogate Recovery Results for 2014 Coalition Monitoring	. 39
Table 12. Summary of Matrix Spike Recovery Results for 2014 Coalition Monitoring	. 40
Table 13. Summary of Field Duplicate Quality Control Sample Results for 2014 Coalition Monitoring	. 41
Table 14. Summary of Lab Duplicate Results for 2014 Coalition Monitoring	. 42
Table 15. Summary of Lab Control Spike Duplicate Precision Results for 2014 Coalition Monitoring	. 42
Table 17. Summary of Climate Data at Sacramento Executive Airport, October 2013 – September 2014	. 46
Table 18. Adopted Basin Plan and California Toxics Rule Objectives for Analytes Monitored 2014 Coalition Monitoring	
Table 19. Unadopted Water Quality Limits Used to Interpret Narrative Water Quality Objective for Analytes Monitored for 2014 Coalition Monitoring	
Table 20. Analytes Monitored for 2014 Coalition Monitoring without Applicable Adopted or Unadopted Limits	. 61
Table 21. Toxicity Exceedances in Sediment in 2014 Coalition Monitoring	. 63
Table 22. Pesticides Detected in 2014 Coalition Monitoring	. 68
Table 23. Pesticides Detected in Sediment in 2014 Coalition Monitoring	. 73
Table 24. Other Physical, Chemical, and Microbiological Parameters Observed to Exceed Numeric Objectives in 2014 Coalition Monitoring	. 77
Table 25. Significant Trends Further Evaluated for Potential Degradation	. 85

List of Figures

Figure 1. Coalition Monitoring Sites, 2014	9
Figure 2-a. Precipitation during 2014 Coalition Monitoring: Plumas County	47
Figure 2-b. Precipitation during 2014 Coalition Monitoring: Upper Sacramento Valley	48
Figure 2-c. Precipitation during 2014 Coalition Monitoring: Lake County	49
Figure 2-d. Precipitation during 2014 Coalition Monitoring: Sierra Foothills	50
Figure 2-e. Precipitation during 2014 Coalition Monitoring: Lower Sacramento Valley	51
Figure 3-a. Flows during 2014 Coalition Monitoring: Plumas County	52
Figure 3-b. Flows during 2014 Coalition Monitoring: East Sacramento Valley	53
Figure 3-c. Flows during 2014 Coalition Monitoring: West Sacramento Valley	54
Figure 3-d. Flows during 2014 Coalition Monitoring: Lower Sacramento Valley	55
Figure 3-e. Flows during 2014 Coalition Monitoring: Lake Berryessa (Reservoir Inflow)	56
Figure 3-f. Flows during 2014 Coalition Monitoring: Pit River near Canby	57
Figure 4-a. Dissolved Orthophosphate as P, Lower Honcut Creek	87
Figure 4-b. Dissolved Orthophosphate as P, Pine Creek at Nord-Gianella Road	87
Figure 4-c. Total Ammonia as N, Pine Creek at Nord-Gianella Road	88
Figure 4-d. Nitrate+Nitrite as N, Freshwater Creek at Gibson Rd	88
Figure 4-e. Selenastrum Toxicity, Andersen Creek	89

This page intentionally left blank

Executive Summary

SUMMARY OF MONITORING PROGRAM

The Sacramento Valley Water Quality Coalition (Coalition) has developed and implemented a Monitoring and Reporting Program (MRP) to meet the requirements of the *Waste Discharge Requirements General Order for Growers within the Sacramento River Watershed that are Members of a Third-Party Group (R5-2014-0030)* (WDR).¹ The scope of the MRP and the sampling and analytical methods used in 2014 Coalition Monitoring have been approved by the Central Valley Regional Water Quality Control Board (Water Board).

In accordance with the WDR requirements, the Coalition is achieving these objectives by implementing an MRP that evaluates samples for the presence of statistically significant toxicity and exceedances of applicable numeric water quality objectives and *Irrigated Lands Regulatory Program (ILRP)* Trigger Limits. The Coalition initiates follow-up actions designed to identify constituents causing significant toxicity when toxicity is of sufficient magnitude. Exceedances of numeric objectives and *ILRP* Trigger Limits for chemical, physical and microbiological biological parameters trigger follow-up actions designed to identify potential sources and to inform potential users of the constituents of concern. Additionally, the Coalition is evaluating the degree of implementation of current management practices in priority watersheds and recommending additional practices as water quality results indicate a need to do so. The Coalition is committed to the principle of adaptive management to control specific discharges of waste that are having an impact on water quality. This iterative approach allows for the most effective use of scarce human and fiscal resources.

The 2014 Coalition Monitoring has been conducted in coordination with the Northeastern California Water Association, the Napa County Putah Creek Watershed Group, the Placer-Nevada-South Sutter-North Sacramento Watershed Group, and the Upper Feather River Watershed Group. Monitoring in the Upper Feather River and Pit River subwatersheds was conducted in coordination the California's Surface Water Ambient Monitoring Program (SWAMP) beginning in 2012. The Coalition also continues to coordinate with the California Rice Commission (CRC) under the December 2004 Coalition-CRC Memorandum of Understanding. The El Dorado and Napa subwatersheds continued their implementation of the Pilot BMP program, and no routine monitoring was conducted in these watersheds in 2014.

The parameters monitored in 2014 by the Coalition to achieve these objectives are as specified in the current MRP (*R5-2014-0030*):

- Water column and sediment toxicity
- Physical and conventional parameters in water and sediment
- Organic carbon
- Pathogen indicator organisms in water

¹ Prior to adoption of the WDR, the Coalition was subject to a Conditional Waiver of Waste Discharge Requirements for the Irrigated Lands Regulatory Program (ILRP) and subsequent amendments to the ILRP requirements (WQO-2004-0003, SWRCB 2004, R5-2005-0833, R5-2008-0005, R5-2009-0875).

- Trace metals in water
- Pesticides in water and sediments
- Nitrogen and phosphorus compounds in water

The MRP also requires testing for 303(d)-listed constituents identified in water bodies downstream from Coalition sites and discharged within the watershed, if irrigated agriculture has been identified as a contributing source within the Sacramento River Watershed and such monitoring has been requested by the Executive Officer.

Note that not all parameters are monitored at every site for every event. Specific individual parameters measured for 2014 Coalition Monitoring are listed in **Table 2**.

A total of 35 regular sampling sites were monitored by the Coalition and coordinating subwatershed monitoring programs during 2014 (**Table 3**). A map of these sites is presented in **Figure 1**.

As required by the MRP, Coalition monitoring events includes storm season monitoring and irrigation season monitoring. The sites and numbers of samples to be collected for 2014 Coalition Monitoring are summarized in **Table 4**. This *2014 Annual Monitoring Report* (AMR) includes results for October 2013 through September 2014.

Sample collection and analysis has been performed by the following agencies and subcontractors.

- Pacific EcoRisk (Fairfield, California) performs toxicity analyses and conducts sampling for all sites, with the specific exceptions below;
 - When monitoring is required for the Napa subwatershed, Napa County Resource Conservation District staff conducts sampling for Napa subwatershed sites;
 - Vestra Environmental conducts sampling on behalf of the Northeastern California Water Association for the Pit River subwatershed site;
 - Placer Resource Conservation District conducted sampling for the Placer-Nevada-South Sutter-North Sacramento subwatershed;
 - Kleinfelder conducts sampling at sites on the Colusa Basin Drain and Sacramento Slough as part of monitoring work done for the California Rice Commission.
- Caltest Analytical Laboratory (Napa, California) and Basic Lab (Redding, California), conduct all conventional and microbiological analyses; and
- APPL (Fresno, California) and Physis Environmental Laboratories (Anaheim, California) conduct pesticide analyses.

TREND ANALYSIS

The results of trend analyses conducted for this Annual Monitoring Report did not indicate a need for any additional locations, events, or parameters. We recommend that these evaluations are conducted no more often than once per assessment period.

MANAGEMENT PRACTICES AND ACTIONS TAKEN

Response to Exceedances

To address specific water quality exceedances, the Coalition and its partners developed a Management Plan in 2008, subsequently approved by the Water Board. The Coalition also previously developed a *Landowner Outreach and Management Practices Implementation Communications Process for Monitoring Results (Management Practices Process)* to address exceedances. Implementation of the approved management plan is the primary mechanism for addressing exceedances observed in the Coalition's *ILRP* monitoring.

Management Plan Status Update

The Coalition submitted the most recent Management Plan Progress Report (MPPR) to the Water Board in April 2014. The Management Plan Progress Report (MPPR) documenting the status and progress toward Management Plan requirements for 2014 is provided to the Water Board with this Annual Monitoring Report. Activities conducted in 2014 to implement the Coalition's Management Plan included addressing exceedances of objectives for registered pesticides, completion of source evaluations for pesticides and toxicity, development of management practice implementation goals, and monitoring required for toxicity and pesticide management plans and TMDLs.

Implementation completed specifically for registered pesticides and toxicity included review and evaluation of pesticide application data, identification of potential sources, and determination of likely agricultural sources. These evaluations were documented in Source Evaluation Reports for each water body and management plan element. For registered pesticides and identified causes of toxicity, the Farm Evaluation survey data for Coalition members will be used to determine the degree of implementation of relevant management practices. These management practice data will be used to establish and track goals for additional management practice implementation needed to address exceedances of Basin Plan water quality objectives and *ILRP* Trigger Limits.

CONCLUSIONS AND RECOMMENDATIONS

The Coalition submits this 2014 Annual Monitoring Report (AMR) as required under the Water Board's Irrigated Lands Regulatory Program (*ILRP*). The AMR provides a detailed description of our monitoring results as part of our ongoing efforts to characterize irrigated agricultural and wetlands related water quality in the Sacramento River Basin.

To summarize, the results from the *ILRP* monitoring in 2014 continue to indicate that with few exceptions, there are no major water quality problems with agricultural and managed wetlands discharges in the Sacramento River Basin.

This AMR characterizes potential water quality impacts of agricultural drainage from a broad geographic area in the Sacramento Valley from October 2013 through September 2014. As of September 2014, a total of 103 Coalition storm and irrigation season events have been completed, with additional events collected by coordinating programs and for follow-up evaluations. For the period of record in this AMR (October 2013 through September 2014), samples were collected for 10 scheduled monthly events and 2 wet weather ("storm") events.

Pesticides were infrequently detected (~1.8% of pesticide results for 2014), and, when detected, rarely exceeded applicable objectives. Two registered pesticides (chlorpyrifos and malathion) exceeded applicable water quality objectives or *ILRP* Trigger Limits in a total of five Coalition monitoring samples (including one field duplicate). In addition, breakdown products of the legacy pesticide DDT [DDD(p,p), DDE(p,p), and DDT(p,p)] were detected above applicable water quality objectives in a total of six samples from three sites.

Many of the pesticides specifically required to be monitored in the past by the *ILRP* have rarely been detected in Coalition water samples, including glyphosate, paraquat, and all of the pyrethroid pesticides. Over 98.3% of all pesticide analyses performed to date for the Coalition have been below detection. Coalition monitoring of pesticides for the *ILRP* for 2014 was conducted based on management plan requirements and on reported pesticide use and relative toxicity risks for pesticides in the subwatersheds. The Coalition also conducted focused monitoring of the *ILRP* required trace elements (arsenic, cadmium, lead, molybdenum, nickel, selenium, and zinc) informed by the Coalition's past monitoring results, which have demonstrated that most of these metals rarely approach or exceed objectives and are not likely to cause adverse impacts to aquatic life or human health in waters receiving agricultural runoff in the Coalition watershed. This focused strategy for monitoring pesticides and trace metals was implemented in 2010 in accordance with the Coalition's 2009 MRP (*Order No. R5-2009-0875*, CVRWQCB 2009), and this same strategy is consistent with the requirements of the new WDR and MRP (*Order No. R5-2014-0030*).

The majority of exceedances of adopted numeric objectives continue to consist of conductivity, dissolved oxygen, and *E. coli*. Agricultural runoff and irrigation return flows may contribute to exceedances of these objectives, but these parameters are primarily controlled or significantly affected by natural processes and sources that are not controllable by agricultural management practices.

The Coalition has implemented the required elements of the *ILRP* since 2004. The Coalition developed a Watershed Evaluation Report (WER) that set the priorities for development and implementation of the initial Monitoring and Reporting Program Plan (MRPP). The Coalition successfully developed the MRPP, QAPP, and Management Plan as required by the *ILRP*, and these documents were approved by the Water Board. Subsequent revisions requested by the Water Board and the Coalition were incorporated into the Coalition's program and implemented through the Coalition's ongoing *ILRP* monitoring efforts. The Coalition also continues to adapt and improve elements of the monitoring program based on the knowledge gained through *ILRP* monitoring efforts.

The 2014 monitoring program was developed to be consistent with the anticipated requirements of the new WDR and MRP (*Order No. R5-2014-0030*) and was approved by the Regional Water Board for this purpose with the understanding that it would serve as the first "Assessment" monitoring for the new MRP. The Coalition has implemented the approved monitoring program in coordination with its subwatershed partners, has initiated follow-up activities required to address observed exceedances, and continues to implement the approved Management Plan. Throughout this process, the Coalition has kept an open line of communication with the Water Board and has made every effort to fulfill the requirements of the *ILRP* in a cost-effective, scientifically defensible, and management-focused manner. This AMR is documentation of the success and continued progress of the Coalition in achieving these objectives.

Introduction

The primary purpose of this report is to document the monitoring efforts and results of the Sacramento Valley Water Quality Coalition (Coalition) Monitoring and Reporting Program (MRP). This Annual Monitoring Report 2014 (AMR) also serves to document the Coalition's progress toward fulfilling the requirements of the *Waste Discharge Requirements General Order for Growers within the Sacramento River Watershed that are Members of a Third-Party Group* (*R5-2014-0030*) (WDR).²

The AMR includes the following elements, as specified in the WDR's MRP:

MRP Section	AMR Requirement	Report Section Headings	Page
V.C.1	Signed Transmittal Letter	NA	-
V.C.2	Title page	Title page	-
V.C.3	Table of contents	Table of Contents	i
V.C.4	Executive Summary	Executive Summary	V
V.C.5	Description of the Coalition Group geographical area	Description of the Watershed	4
V.C.6	Monitoring objectives and design	Monitoring Objectives	5
V.C.7	Sampling site descriptions and rainfall records for the time period covered under the AMR	Sampling Site Locations and Land Uses; Summary of Sampling Conditions	7; 45
V.C.8	Location map(s) of sampling sites, crops and land uses	Appendix E: Drainage Maps	CD
V.A.1; ⁴ V.C.9; V.C.11	An Excel workbook containing an export of all data records uploaded and/or entered into the CEDEN- comparable database (surface water data). The workbook shall contain, at a minimum, those items detailed in the most recent version of the third-party's approved QAPP Guidelines; Tabulated results of all analyses arranged in tabular form so that the required information is readily discernible; Electronic data submittal.	Appendix C: Tabulated Monitoring Results	CD

Table 1. MRP Annual Monitoring Report Requirements³

² Prior to adoption of the WDR, the Coalition was subject to a Conditional Waiver of Waste Discharge Requirements for the Irrigated Lands Regulatory Program (ILRP) and subsequent amendments to the ILRP requirements (WQO-2004-0003, SWRCB 2004, R5-2005-0833, R5-2008-0005, R5-2009-0875).

³ Monitoring and Reporting Program (Attachment B to R5-2014-0030), Section V.C.

⁴ Quarterly Submittals of Monitoring Results (WDR Provision V.A) are re-submitted with the AMR.

MRP Section	AMR Requirement	Report Section Headings	Page					
V.C.10	Discussion of data relative to water quality objectives/Trigger Limits and water quality management plan milestones/Basin Plan Amendment Workplan (BPAW) updates, if applicable	Data Interpretation	45					
V.C.12	Sampling and analytical methods used	Sampling and Analytical Methods	17					
V.A.5; ⁴ V.A.7.c.; V.C.13	Electronic copies of all applicable laboratory analytical reports on a CD; Chain of custody (COCs) and sample receipt documentation; Associated laboratory and field quality control samples results	Appendix B: Lab Reports and Chains of Custody	CD					
V.C.14	Summary of Quality Assurance Evaluation results (as identified in the most recent version of the Coalition's QAPP for Precision, Accuracy and Completeness)	Monitoring Results						
V.A.3-4; ⁴ V.C.15	Electronic copies of all field sheets; Electronic copies of photos obtained from all surface water monitoring sites, clearly labeled with the CEDEN comparable station code and date; Specification of the method(s) used to obtain estimated flow at each surface water monitoring site during each monitoring event	Appendix A: Field Log Copies	CD					
V.C.16	Summary of exceedances of water quality objectives/Trigger Limits occurring during the reporting period and surface water related pesticide use information	Exceedances of Relevant Water Quality Objectives; Appendix D: Exceedance Reports	58; CD					
V.C.17	Actions taken to address water quality exceedances that have occurred, including but not limited to, revised or additional management practices implemented	Management Practices and Actions Taken; Appendix F: SVWQC Outreach Materials	90					
V.C.18	Evaluation of monitoring data to identify temporal and spatial trends and patterns	Trend Analysis; Appendix G: Trend Analysis Results	82					

MRP Section	AMR Requirement	Report Section Headings	Page
V.C.19	Summary of Nitrogen Management Plan information submitted to the Coalition	5	NA
V.C.20	Summary of Management Practice information collected as part of Farm Evaluations	Summary of Farm Evaluation Data	92
V.C.21	Summary of Mitigation Monitoring	6	NA
V.C.22	Summary of education and outreach activities	Management Practices and Actions Taken; Appendix F: SVWQC Outreach Materials	90
V.C.23	Reduced Monitoring/Management Plan Verification Option Reports	5	NA
V.C.24	Conclusions and recommendations	Conclusions and Recommendations	93

All report elements required by the WDR are included in this report.

⁵ This requirement will be addressed in future AMRs. No subwatersheds have yet been approved for this option.

⁶ This item is not applicable because no mitigation monitoring was conducted in 2014.

Description of the Watershed

The Sacramento River watershed drains over 27,000 square miles of land in the northern part of California's Central Valley into the Sacramento River. The upper watersheds of the Sacramento River region include the Pit River watershed above Lake Shasta and the Feather River above Lake Oroville. The Sacramento Valley drainages include the Colusa, Cache Creek, and Yolo Bypass watersheds on the west side of the valley, and the Feather, Yuba, and American River watersheds on the east side of the valley. The Coalition also monitors in the Cosumnes River watershed, which is not part of the Sacramento River watershed.

Beginning near the city of Redding at its northern terminus, the Sacramento Valley stretches approximately 180 miles to the southeast, where it merges into the Sacramento-San Joaquin River Delta south of the Sacramento metropolitan area at Rio Vista. The valley is 30 to 45 miles wide in the southern to central parts but narrows to about 5 miles wide near Redding. Its elevation decreases from 300 feet at its northern end to near sea level in the Delta. The greater Sacramento River watershed includes sites from 5,000 feet in elevation to near sea level.

The Sacramento River Basin is a unique mosaic of farm lands, refuges, and managed wetlands for waterfowl habitat; spawning grounds for numerous salmon and steelhead trout; and the cities and rural communities that make up this region. This natural and working landscape between the crests of the Sierra Nevada and the Coast Range includes the following:

- More than a million acres of family farms that provide the economic engine for the region; provide a working landscape and pastoral setting; and serve as valuable habitat for waterfowl along the Pacific Flyway. The predominant crops include: rice, general grain and hay, improved pasture, corn, tomatoes, alfalfa, almonds, walnuts, prunes, safflower, and vineyards.
- Habitat for 50% of the threatened and endangered species in California, including the winter-run and spring-run salmon, steelhead, and many other fish species.
- Six National Wildlife Refuges, more than fifty state Wildlife Areas, and other privately managed wetlands that support the annual migration of waterfowl, geese, and water birds in the Pacific Flyway. These seasonal and permanent wetlands provide for 65% of the North American Waterfowl Management Plan objectives.
- The small towns and rural communities that form the backbone of the region, as well as the State Capital that serves as the center of government for the State of California.
- The forests and meadows in the numerous watersheds of the Sierra Nevada and Coast Range.

Monitoring Objectives

The Coalition's monitoring program will conform to the goals of the Nonpoint Source (NPS) Program and achieve the following objectives as a condition of the WDR's MRP:

- 1. Track, monitor, assess and report program activities;
- 2. Ensure consistent and accurate reporting of monitoring activities;
- 3. Target NPS Program activities at the watershed level;
- 4. Coordinate with public and private partners; and
- 5. Track implementation of management practices to improve water quality and protect existing beneficial uses.

In accordance with the WDR requirements, the Coalition is achieving these objectives by implementing an MRP that evaluates samples for the presence of statistically significant toxicity and exceedances of applicable numeric water quality objectives and *ILRP* Trigger Limits. The Coalition initiates follow-up actions designed to identify constituents causing significant toxicity when toxicity is of sufficient magnitude. Exceedances of numeric objectives and *ILRP* Trigger Limits for chemical, physical and microbiological biological parameters trigger follow-up actions designed to identify potential sources and to inform potential users of the constituents of concern. Additionally, the Coalition is evaluating the degree of implementation of current management practices in priority watersheds and recommending additional practices as water quality results indicate a need to do so. The Coalition is committed to the principle of adaptive management to control specific discharges of waste that are having an impact on water quality. This iterative approach allows for the most effective use of scarce human and fiscal resources.

The parameters monitored in 2014 by the Coalition to achieve these objectives are as specified in the current MRP (R5-2014-0030):

- Water column and sediment toxicity
- Physical and conventional parameters in water and sediment
- Organic carbon
- Pathogen indicator organisms in water
- Trace metals in water
- Pesticides in water and sediment
- Nitrogen and phosphorus compounds in water

The MRP also requires testing for 303(d)-listed constituents identified in water bodies downstream from Coalition sites and discharged within the watershed, if irrigated agriculture has been identified as a contributing source within the Sacramento River Watershed and such monitoring has been requested by the Executive Officer.

Note that not all parameters are monitored at every site for every event. Specific individual parameters measured for 2014 Coalition Monitoring are listed in **Table 2**.

Analyte	Quantitation Limit ^(a)	Reporting Unit
Physical Parameters		
Flow	NA	CFS (Ft ³ /Sec)
рН	0.1 ^(b)	-log[H⁺]
Conductivity	0.1 ^(b)	μmhos/cm
Dissolved Oxygen	0.1 ^(b)	mg/L
Temperature	0.1 ^(b)	°C
Hardness, total as CaCO₃	10	mg/L
Turbidity	1.0	NTU
Total Dissolved Solids	6.0	mg/L
Total Suspended Solids	3.0	mg/L
Total Organic Carbon	0.5	mg/L
Grain size (in sediment)	1	% fraction
Total Organic Carbon (in toxic sediments)	200	mg/kg d.w.
Pathogen Indicators		
<i>E. coli</i> bacteria	2	MPN/100 mL
Water Column Toxicity		
Ceriodaphnia, 96-h acute	NA	% Survival
Pimephales, 96-h acute	NA	% Survival
Selenastrum, 96-h short-term chronic	NA	Cell Growth
Sediment Toxicity		
Hyalella, 10-day short-term chronic	NA	% Survival
Pesticides		
Benzophenyls	(c)	µg/L
Carbamates	(c)	µg/L
Herbicides	(c)	µg/L
Organochlorine	(c)	µg/L
Organophosphorus	(c)	µg/L
Pyrethroids and chlorpyrifos	(c)	ng/g, d.w.
Trace Elements		
Arsenic	0.5	µg/L
Boron	10	µg/L
Cadmium	0.1	μg/L
Copper	0.5	µg/L
Lead	0.25	µg/L
Selenium	0.5	µg/L
Nutrients		-
Ammonia as N	0.1	mg/L
Nitrate + Nitrite as N	0.1	mg/L
Orthophosphate as P	0.1	mg/L
Phosphorus, total	0.1	mg/L
Total Kjeldahl Nitrogen	0.1	mg/L

Table 2. Constituents Monitored for the 2014 Monitoring Year

Notes:

(a) The Quantitation Limit (QL) represents the concentration of an analyte that can be routinely measured in the sampled matrix within stated limits and confidence in both identification and quantitation.

(b) Detection and reporting limits are not strictly defined. Value is required reporting precision.

(c) Limits are different for individual pesticides.

Sampling Site Descriptions

To successfully implement the monitoring and reporting program requirements contained in the *ILRP* adopted by the Water Board in June 2003, the Coalition worked directly with landowners in the 21 county watersheds to identify and develop ten (now 13) subwatershed groups. Representatives from each subwatershed group utilized agronomic and hydrologic data generated by the Coalition in an attempt to prioritize watershed areas for initial evaluation to ultimately select monitoring sites in their respective areas based upon existing infrastructure, historical monitoring data, land use patterns, historical pesticide use, and the presence of 303(d)-listed water bodies.

Coalition members selected sampling sites in priority watersheds based upon the following fundamental assumptions regarding management of non-point source discharges to surface water bodies: 1) Landscape scale sampling at the bottom of drainage areas allows determination of the presence of water quality problems using a variety of analytical methods, including water column and sediment toxicity testing, water chemistry analyses, and bioassessment; 2) Strategic source investigations utilizing Geographic Information Systems can be used to identify upstream parcels with attributes that may be related to the analytical results, including crops, pesticide applications, and soil type; and 3) Management practice effectiveness can best be assessed by coalitions at the drainage and watershed scale to determine compliance with water quality objectives in designated water bodies. Results from farm-level management practices evaluations will be used to complement Coalition efforts on the watershed scale by providing crop-specific information that will support management practice recommendations.

The Coalition uses a "Representative Monitoring" approach to achieve the goals of the 2014 MRP:

- Representative monitoring is conducted at sites in drainages representative of larger regions based on shared agricultural and geographic characteristics;
- Representative monitoring includes a cycle of two years of "Assessment" monitoring for the broader suite of *ILRP* analytes, followed by two years of sampling needed for Management Plan implementation; and
- Monitoring schedules and the analytes monitored are customized based on the characteristics of individual subwatersheds and Management Plans.

Monitoring sites for 2014 were continued from previously monitored locations and included ongoing representative sites and sites monitored only for management plans or TMDLs. A total of 17 representative sites were monitored, and Management Plan sampling was conducted at all 17 of the representative monitoring sites and at 18 additional sites.

SAMPLING SITE LOCATIONS AND LAND USES

The water and sediment sites monitored by the Coalition in 2014 are listed in **Table 3**. All sites monitored in 2014 have been approved by the Water Board as MRP compliance sites. An overall map of Coalition and subwatershed sites is presented in **Figure 1**. Site-specific drainage maps with land use patterns for all monitoring locations are also provided in **Appendix E**.

Subwatershed	Site Name	Latitude	Longitude	Agency	Site II Categ (Fig.	ory
ButteYubaSutter	Butte Slough at Pass Road	39.1873	-121.90847	SVWQC	BTTSL	MP
ButteYubaSutter	Gilsizer Slough at George Washington Ro	39.009	-121.6716	SVWQC	GILSL	MP
ButteYubaSutter	Lower Honcut Creek at Hwy 70	39.30915	-121.59542	SVWQC	LHNCT	REP
ButteYubaSutter	Lower Snake R. at Nuestro Rd	39.18531	-121.70358	SVWQC	LSNKR	REP
ButteYubaSutter	Pine Creek at Nord Gianella Road ¹	39.78114	-121.98771	SVWQC	PNCGR	REP
ButteYubaSutter	Pine Creek at Highway 23 ¹	39.75338	-121.97124	SVWQC	PNCHY	REP
ButteYubaSutter	Sacramento Slough bridge near Karnak	38.785	-121.6533	SVWQC	SSKNK	REP
ColusaGlenn	Colusa Basin Drain above KL	38.8121	-121.7741	SVWQC	COLDR	REP
ColusaGlenn	Freshwater Creek at Gibson Rd	39.17664	-122.18915	SVWQC	FRSHC	REP
ColusaGlenn	Lurline Creek at 99W	39.21215	-122.18331	SVWQC	LRLNC	MP
ColusaGlenn	Rough & Ready Pumping Plant (RD 108)	38.86209	-121.7927	SVWQC	RARPP	MP
ColusaGlenn	Stone Corral Creek near Maxwell Road	39.2751	-122.1043	SVWQC	SCCMR	MP
ColusaGlenn	Stony Creek on Hwy 45 near Rd 24	39.71005	-122.00404	SVWQC	STYHY	MP
ColusaGlenn	Walker Creek near 99W and CR33	39.62423	-122.19652	SVWQC	WLKCH	REP
ElDorado	Coon Hollow Creek	38.75335	-120.72404	SVWQC	COONH	MP
ElDorado	North Canyon Creek	38.76242	-120.70996	SVWQC	NRTCN	REP
Lake	McGaugh Slough at Finley Road East	39.00417	-122.86233	SVWQC	MGSLU	MP
Lake	Middle Creek u/s from Highway 20	39.17641	-122.91271	SVWQC	MDLCR	REP
PitRiver	Fall River at Fall River Ranch Bridge	41.0351	-121.4864	NECWA	FRRRB	MP
PitRiver	Pit River at Canby Bridge	41.4017	-120.931	NECWA	PRCAN	MP
PitRiver	Pit River at Pittville	41.0454	-121.3317	NECWA	PRPIT	REP
PNSSNS	Coon Creek at Brewer Road	38.93399	-121.45184	PNSSNS	CCBRW	REP
PNSSNS	Coon Creek at Striplin Road	38.8661	-121.5803	PNSSNS	CCSTR	MP
SacramentoAmador	Cosumnes River at Twin Cities Rd	38.29098	-121.38044	SVWQC	CRTWN	REP
SacramentoAmador	Dry Creek at Alta Mesa Road	38.248	-121.226	SVWQC	DCGLT	MP
SacramentoAmador	Grand Island Drain near Leary Road	38.2399	-121.5649	SVWQC	GIDLR	REP
SacramentoAmador	Laguna Creek at Alta Mesa Rd	38.31102	-121.2263	SVWQC	LAGAM	MP
ShastaTehama	Anderson Creek at Ash Creek Road	40.418	-122.2136	SVWQC	ACACR	REP
ShastaTehama	Coyote Creek at Tyler Road	40.09261	-122.15898	SVWQC	COYTR	MP
Solano	Shag Slough at Liberty Island Bridge	38.30677	-121.69337	SVWQC	SSLIB	REP
Solano	Ulatis Creek at Brown Road	38.307	-121.794	SVWQC	UCBRD	REP
Solano	Z-Drain	38.45215	-121.6752	SVWQC	ZDDIX	MP
UpperFeatherRiver	Middle Fk Feather River above Grizzly Cr	39.816	-120.426	UFRW	MFFGR	REP
Yolo	Cache Creek at Capay Diversion Dam	38.7137	-122.0851	SVWQC	CCCPY	MP
Yolo	Tule Canal at I-80	38.5728	-121.5827	SVWQC	TCHWY	MP
Yolo	Willow Slough Bypass at Pole Line	38.59015	-121.73058	SVWQC	WLSPL	REP

Table 3. Monitoring Sites for 2014 Coalition Monitoring

Note:

[1] Beginning event 96, the Pine Creek monitoring site was moved from PNCGR to PNCHY.

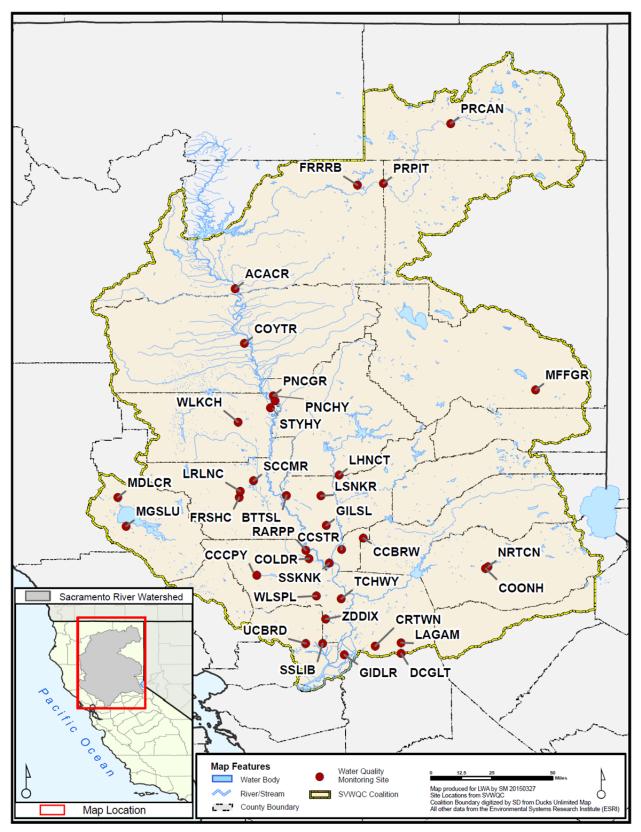


Figure 1. Coalition Monitoring Sites, 2014

SITE DESCRIPTIONS

Butte/Yuba/Sutter Subwatershed

Butte Slough at Pass Road (BTTSL)

Butte Slough is a tributary of Butte Creek. It joins Butte Creek near its outflow to the Sacramento River. The sampling location is approximately 1.5 miles from the confluence with Butte Creek. Butte Creek is a source of water in Butte Slough when irrigation withdrawals are being made. In addition to the water from Butte Creek, Butte Slough receives drainage from the wetlands of Gray Lodge Waterfowl Management Area, Butte Sink Wildlife Management Area, the fields surrounding Cherokee Canal and the orchards and fields west of Gridley and the Buttes.

Gilsizer Slough at George Washington Road (GILSL)

Gilsizer Slough is an unlined storm drainage outfall canal that runs from the Gilsizer County Drainage District's north pump station approximately 15 miles to the Sutter Bypass, draining 6,005 total acres. The monitoring location is located roughly 1.5 drainage miles from its confluence with the Sutter bypass and is a natural drainage channel that historically has drained Yuba City and the area south of town. Principal crops grown in this area include prunes, walnuts, peaches, and almonds.

Lower Honcut Creek at Highway 70 (LHNCT)

Lower Honcut Creek (in the Lower Honcut Creek drainage) was selected to represent the drainages in the eastern part of the Butte-Yuba-Sutter subwatershed. This drainage includes the dominant crops and typically has flows allowing sampling through irrigation season. The sampling site is located approximately 3.5 miles from its confluence with the Feather River. Dominant crops in this drainage include rice, walnuts, prunes, pasture, citrus, olive, grapes. Lower Honcut receives flows from North Honcut Creek and South Honcut Creek, which extend up into the foothills and include more pasture acreage.

Lower Snake River at Nuestro Road (LSNKR)

The Lower Snake River is an unlined irrigation supply and runoff canal that serves approximately 25,000 total acres and includes a relatively high percentage of rice acreage. The other predominant crops include prunes, peaches, idle acreage, and operations producing flowers, nursery stock, and Christmas trees.

Pine Creek at Nord-Gianella Road (PNCGR and PNCHY)

The watershed sampled upstream from the monitoring site represents approximately 28,000 acres of varied farmland, riparian habitat and farmsteads. The predominant crops in this area are walnuts, almonds, prunes, wheat, oats, barley, beans, squash, cucumbers, alfalfa, pasture, and safflower. Monitoring was moved from PNCGR to PNCHY in 2014 for more consistent flows and sampling.

Sacramento Slough Bridge near Karnak (SSKNK)

This site aggregates water from all areas in the subwatershed between the Feather and Sacramento Rivers. The major contributing areas include the areas downstream of the Butte Slough and Wadsworth monitoring sites. These areas include Sutter Bypass and its major inputs from Gilsizer Slough, RD 1660, RD 1500, and the Lower Snake River. Monitoring at this site is coordinated with the California Rice Commission.

Colusa Glenn Subwatershed

Colusa Basin Drain above Knights Landing (COLDR)

This site is near the outfall gates of the Colusa Basin Drain before its confluence with the Sacramento River. This site is downstream of all of the other monitoring sites within the basin. The upstream acreage consists of almonds, tomatoes, wetlands, pasture, corn, and walnuts. Monitoring at this site is coordinated with the California Rice Commission.

Freshwater Creek at Gibson Road (FRSHC)

The Freshwater Creek drainage includes approximately 83,000 total acres. Irrigated acreage (excluding rice acreage) is approximately 19,000 acres. Predominant crops in the drainage are rice, tomatoes, idle, squash, grain, pasture, and safflower.

Lurline Creek at 99W (LRLNC)

The Lurline Creek drainage includes approximately 55,000 total acres. Irrigated acreage (excluding rice acreage) is approximately 19,000 acres. Predominant crops in the drainage are rice, idle acreage, pasture, managed wetland, grain, melons, and squash.

Rough and Ready Pumping plant, RD 108 (RARPP)

The Rough & Ready Pumping Plant aggregates runoff and return flows for the Sycamore drainage. The pumps lift the water into the Sacramento River. This drainage area contains large amounts of tomatoes, safflower, wheat, melons, corn, and pasture.

Stone Corral Creek at Maxwell Road (SCCMR)

This site captures drainage from approximately 10,000 irrigated acres in the Stone Corral Creek drainage area as indicated on the Colusa Basin Subwatershed map. The primary crops include pasture, wheat, rice and safflower.

Stony Creek on Hwy 45 near Rd 24 (STYHY)

This site characterizes water from the contributing area downstream of Black Butte Reservoir just north of the town of Orland and includes approximately 20,000 acres of irrigated lands. The major irrigated crops in the Lower Stony Creek drainage are pasture, almonds, prunes, and wheat.

Walker Creek near 99W and CR33 (WLKCH)

The Walker Creek drainage is located east of Wilson Creek in Glenn County, and the Walker Creek monitoring site is located 1.3 miles north of the Town of Willows. The Walker Creek

drainage includes approximately 27,000 total irrigated acres. Predominant crops in this drainage are almonds, rice, corn, and alfalfa. This is a representative site for this subwatershed.

El Dorado Subwatershed

North Canyon Creek (NRTCN)

This site captures representative agricultural drainage from the Camino-"Apple Hill" drainage in El Dorado County. Crops grown in this region include apples, pears, wine grapes, stone fruit, and Christmas trees. This site is approximately one (1) mile upstream from the confluence with the South Fork American River and is a perennial stream. This is a representative site for this subwatershed. This subwatershed is in the BMP Pilot Program. In 2013, this site was only monitored for Management Plan requirements.

Coon Hollow Creek (COONH)

This site is located in the Apple Hill area of Camino, approximately 1 mile north of the intersection of North Canyon Road and Carson Road and 1/2 mile south of the confluence with South Canyon Creek. Agricultural operations within the drainage include silviculture, apples, wine grapes, cherries, and blueberries. Coon Hollow Creek is considered a low-flow perennial stream.

Lake Subwatershed

Middle Creek Upstream from Highway 20 (MDLCR)

The Middle Creek drainage contains approximately 60,732 acres. Over 55,000 acres are listed as Native Vegetation with the US Forest Service controlling the majority of the land. Irrigated agriculture constitutes approximately 1,112 acres participating in the Lake County Watershed group. This includes 374 acres of walnuts, 308 acres of grapes, 186 acres of pears 159 acres of hay/pasture, 10 acres of specialty crops/nursery crops and about 70 acres of wild rice.

The sampling location was chosen to avoid influence for the town of Upper Lake, and captures approximately 60% of irrigated agricultural operations within this drainage. This is a representative site for this subwatershed.

McGaugh Slough at Finley Road East (MGSLU)

McGaugh Slough captures irrigated agricultural drainage from about 10,300 acres of orchard and vineyard crops in Lake County. This site characterizes the most prevalent drain for the Big Valley, which is the most intensive area for agricultural operations in Lake County.

Napa Subwatershed

Pope Creek above Lake Berryessa (PCULB)

The site on Pope Creek in Napa County is downstream of major storm runoff and above Lake Berryessa. Primary crops in the drainage are vineyards and olive orchards. Additional tributaries in the Pope Creek area (Burton Creek, Swartz Creek, Maxwell Creek, and upper Pope Creek) have been sampled to help establish regional characteristics for management plan source evaluations. This site is a representative site for this subwatershed. In 2013, this site was not monitored because this subwatershed is in the BMP Pilot Program.

Pit River Subwatershed

Monitoring in this subwatershed has been conducted in coordination with the Northeastern California Watershed Association (NECWA) and the California's Surface Water Ambient Monitoring Program (SWAMP).

Pit River at Pittville Bridge (PRPIT)

This site captures drainage from Big Valley, Ash Creek and Horse Creek. This site captures drainage from native pasture (the primary land use), as well as alfalfa, oat hay, grain and duck marsh, ultimately incorporating approximately 9,000 acres in the Fall River Valley. This is a representative site for this subwatershed.

Fall River at Fall River Ranch Bridge (FRRRB)

This site is located at the lower end of Fall River before the river is partially diverted for hydroelectric uses at the Pit 1 Power House. The majority of Fall River flow is spring-fed water that emerges in the northern portions of the valley (e.g., Lava Creek Springs, Spring Creek Springs, Crystal Springs, Mallard Springs, Big Lake Springs, Thousand Springs, Hideaway Spring, Rainbow Spring). These springs form the Little Tule River, Tule River, Spring Creek, Lava Creek, Mallard Creek, and Ja She Creek. A major tributary to Fall River (Bear Creek) captures flow mostly from private timberland comprising approximately 27 square miles of watershed. Bear Creek joins the Fall River near Thousand Springs. Finally, small amounts of water enter the Fall River from overland flow during winter and from irrigated lands during the growing season. Pasture, wild rice, and alfalfa are the primary agriculture crops in the northern portion of the valley. Total irrigated acreage draining to this site is approximately 12,000 acres.

Pit River at Canby (PRCAN)

This site captures drainage from the Alturas and Canby drainage areas, as well as drainage from the North and South Fork of Pit River and Hot Springs Valley. Land uses are primarily pasture and grain and hay crops. Approximate irrigated acreage is 50,000.

Placer/Nevada/South Sutter/North Sacramento Subwatershed

Coon Creek at Brewer Road (CCBRW)

This site captures drainage from the Middle Coon Creek drainage areas as identified in the Placer-Northern Sacramento Drainage Prioritization Table in the Coalition's Watershed Evaluation Report (WER). This site is on Coon Creek about six miles northwest of the town of Lincoln and includes predominantly agricultural acreage. The drainage includes approximately 65,000 irrigated acres of rice, rice, pasture, grains, and sudan grass, with a high percentage of rice acreage. This is a representative site for this subwatershed.

Coon Creek at Striplin Road (CCSTR)

This site captures drainage from the Lower Coon Creek drainage areas and is hydrologically isolated from the Middle Coon Creek drainage. The sampling site is on Coon Creek about one

mile downstream of the confluence with Ping Slough. The site drains approximately 25,000 irrigated acres of orchards, pasture, and wheat. There may also be some urban runoff contributions at this site.

Sacramento/Amador Subwatershed

Cosumnes River at Twin Cities Road (CRTWN)

This site characterizes flows from the east via the Cosumnes River and a handful of tributary creeks that originate in the foothills. Contributing agricultural acreage includes pasture, vineyards, corn and grains. This site captures drainage from the two largest drainages in the subwatershed: Lower Cosumnes and Middle Cosumnes, which drain approximately 55,000 irrigated acres. This is a representative site for this subwatershed.

Dry Creek at Alta Mesa Road (DCGLT)

Dry Creek originates in the eastern foothills and flows through considerable agricultural acreage. The drainage includes the southern portion of Amador County, the southeast corner of Sacramento County and the northeast corner of San Joaquin County. Amador County agriculture includes grain and irrigated pasture in the Dry Creek Valley and row crops, irrigated pasture, grain, vineyard, and orchard in the Jackson Valley. Sacramento County agriculture includes vineyard, irrigated pasture, grain, and scattered dairies. Dry Creek drains approximately 329 square miles.

Grand Island Drain near Leary Road (GIDLR)

Grand Island is located in the heart of the Sacramento Delta. Crops include alfalfa, corn, safflower, apples, pears, cherries, blueberries, asparagus, grapes, and pasture land. Water is pumped on to the island at several locations. The monitoring site is located just up-slough from a station that returns water to the Delta. Approximately 8,000 acres drains to the monitoring site. This is a representative site for this subwatershed.

Laguna Creek at Alta Mesa Road (LAGAM)

Laguna Creek is a tributary to the Cosumnes River. Laguna Creek originates in Amador County and flows south-west into Sacramento County, draining Willow, Hadselville, Brown and Griffith Creeks, among others. The primary agricultural uses are vineyards, field crops, grain and hay crops and pasture.

Shasta/Tehama Subwatershed

Anderson Creek at Ash Creek Road (ACACR)

Anderson Creek was identified as the highest priority drainage in the Shasta county portion of the Shasta/Tehama subwatershed. This ranking was based on total irrigated acreage, crop types by acreage, and amount and type of pesticide use. Anderson Creek originates about three miles west of the city of Anderson and then flows into the Sacramento River. Crops are predominantly pasture, followed by walnuts and alfalfa/hay and then smaller amounts of other field and orchard crops. Total irrigated land is 8,989 acres. This is a representative site for this subwatershed.

Coyote Creek at Tyler Road (COYTR)

The Coyote Creek drainage includes approximately 37,000 total acres. Irrigated acreage (excluding rice acreage) is approximately 6,700 acres. Predominant crops in the drainage are pasture, walnuts, prunes, almonds, and olives.

Solano Subwatershed

Shag Slough at Liberty Island Bridge (SSLIB)

Shag Slough drains a large portion of the South Yolo Bypass. Crops grown in this drainage area include corn, safflower, grain, vineyards, tomatoes, and irrigated pasture. The Liberty Island Bridge site is approximately 2.5 to 3 miles southwest of the Toe Drain in Shag Slough. Like the Toe Drain, it is a tidally influenced site and is likely to contain a mixture of Toe Drain water along with water from other sub-drainages within the South Yolo Bypass and the Southwest Yolo Bypass. Due to the difficulty in accessing the Toe Drain for sampling, Shag Slough replaced the original Toe Drain sampling location in late 2005. This is a representative site for this subwatershed.

Ulatis Creek at Brown Road (UCBRD)

Ulatis Creek is a flood control project (FCP) that drains the majority of the central portion of Solano County. The Ulatis Creek FCP monitoring site is approximately 8.5 miles south of Dixon and 1.5 miles east of State Highway 113 on Brown Road. This site drains the Cache Slough area, as designated in the Yolo/Solano subwatershed map, and empties into Cache Slough. The major crops in this area include wheat, corn, pasture, tomatoes, alfalfa, Sudan grass, walnuts and almonds. This is a representative site for this subwatershed.

Z-Drain (ZDDIX)

The Z-Drain is a tributary draining into the Yolo Bypass south of Interstate 80. This site drains the SW Yolo Bypass drainage area. The major crops in this drainage include pasture, wheat, corn, tomatoes, and alfalfa. A secondary site (ZDDSS) is located immediately downstream of ZDDIX and is occasionally sampled for follow-up source evaluations.

Upper Feather River Watershed

Agriculture in this subwatershed is localized in mountain valleys that are suitable for grazing and growing alfalfa, hay and grain crops. Monitoring in this subwatershed is therefore focused on characterizing drainage from three valleys with considerable agricultural acreage. Monitoring in this subwatershed has been conducted in coordination with the Upper Feather River Watershed (UFRW) group and the California's Surface Water Ambient Monitoring Program (SWAMP).

Middle Fork Feather River above Grizzly Creek (MFFRG)

The Middle Fork above Grizzly Creek is below the last irrigated site in the Sierra Valley subwatershed and has year-round flow in most years. This site replaced Middle Fork Feather River at County Rd A-23, which lacks year-round flows (often dry by mid-July) and has numerous non-agricultural uses, including recreation and filling water trucks. This is a representative site for this subwatershed.

Yolo Subwatershed

Cache Creek at Capay Diversion Dam (CCCPY)

The diversion dam on Cache Creek near Capay is the main diversion point for irrigation water in the 190,000 acre Yolo County Flood Control and Water Conservation District. The Diversion Dam is located 1.9 miles west of the town of Capay. During the summer irrigation season, the water at this site is released from storage approximately 50-60 miles upstream, from the Clear Lake and Indian Valley Reservoirs. There is no snow pack in this coastal watershed, therefore winter flows are very flashy (rising and falling quickly). Major crops in this drainage include tomatoes, alfalfa, corn, wheat, grapes, and orchards.

Tule Canal at North East corner of I-80 (TCHWY))

This site is near the USGS Gauging Station in the Upper Yolo Bypass and is located just South of Interstate 80. This site characterizes the East Side Canal in the bypass and serves as a major drain for croplands in the North Yolo Bypass drainage as indicated on the Yolo Solano Subwatershed map. This drainage area includes corn, wheat, tomatoes, safflower and pasture.

Willow Slough Bypass at Pole Line Road (WLSPL)

The Willow Slough is a large drainage including approximately 102,000 total acres. Irrigated acreage (excluding rice acreage) is approximately 66,000 acres. Predominant crops in the drainage are grain, pasture, corn, tomatoes, rice, almonds, and walnuts. This is a representative site for this subwatershed.

Sampling and Analytical Methods

The objective of data collection for this monitoring program is to produce data that represent, as closely as possible, *in situ* conditions of agricultural discharges and water bodies in the Central Valley. This objective will be achieved by using standard accepted methods to collect and analyze surface water and sediment samples. Assessing the monitoring program's ability to meet this objective will be accomplished by evaluating the resulting laboratory measurements in terms of detection limits, precision, accuracy, representativeness, comparability, and completeness, as described in the Coalition's QAPP (SVWQC 2010) and approved by the Water Board.

Surface water samples were collected for analysis of the constituents listed in **Table 2** as specified in the Coalition's Monitoring Plans. Surface water and sediment samples were collected for chemical analyses and toxicity testing. All samples were collected and analyzed using the methods specified in the QAPP; any deviations from these methods were explained.

SAMPLE COLLECTION METHODS

All samples were collected in a manner appropriate for the specific analytical methods used and to ensure that water column samples were representative of the flow in the channel cross-section. Water quality samples were collected using clean techniques that minimize sample contamination. Samples were cross-sectional composite samples or mid-stream, mid-depth grab samples, depending on sampling site and event characteristics. When grab sample collection methods were used, samples were taken at approximately mid-stream and mid-depth at the location of greatest flow (where feasible). Where appropriate, water samples were collected using a standard multi-vertical depth integrating method. Abbreviated sampling methods (i.e., weighted-bottle or dip sample) may be used for collecting representative water samples.

Sediment sampling was conducted at sampling sites on an approximately 50-meter reach of the waterbody near the water sampling location. If USGS methods were applicable, sediment subsamples were collected from five to ten wadeable depositional zones. Depositional zones include areas on the inside bend of a stream or areas downstream from obstacles such as boulders, islands, sand bars, or simply shallow waters near the shore. In low-energy, low-gradient waterbodies, composite samples may be collected from the bottom of the channel using appropriate equipment, as specified in the Coalition's QAPP.

Details of the standard operating procedures (SOPs) for collection of surface water and sediment samples are provided in the Coalition's QAPP. The sites and number of samples for 2014 Coalition Monitoring are summarized in **Table 4**. The Coalition's monitoring strategy for 2014 was designed to characterize high priority drainages that are representative of a subwatershed's dominant agricultural crops and practices. This sampling approach was initially designed to comply with the requirements in *Order No. R5-2008-0005* and with the later adopted *ILRP* MRP (*Monitoring and Reporting Program Order No. R5-2014-0030*). The elements that are key to achieving the Coalition's goals and satisfying the intent of the requirements of the *R5-2014-0030* MRP are (1) the Coalition's prioritization process for selecting representative drainages and monitoring sites, and (2) identification of monitoring parameters and schedules appropriate for these representative drainages. This approach was detailed in the Coalition's 2009 Monitoring and Reporting Program Plan, as required by *Order No. R5-2014-0030*.

This page intentionally left blank

	SAM	PLING	NG CORE PARAMETERS METALS PESTICIDES IN WATER																	τοχι	CITY													
Waterbody ButteYubaSutter Butte Slough Gilsizer Slough	Water Column Sample Events	Sediment Sample Events	pH, conductivity, DO, temperature, flow	Turbidity, TSS, TOC	Nutrients	Pathogen Indicators: <i>E. Coli</i>	arsenic (total)	boron (total)	copper (total and dissolved)	lead (total and dissolved)	selenium (total)	abamectin	azinphos-methyl	carbaryl	chlorothalonil	chlorpyrifos	diazinon	diuron	hexazinone	malathion	mancozeb	maneb	metolachior	oxyfluorfen	s-metolachlor	simazine	Legacy OCLs	Legacy OCLs-GrpA	Ceriodaphnia, 96-h acute	Pimephales, 96-hour acute	Selenastrum, 96-h short-term chronic	Hyalella, 10-day short-term chronic	grain size in sediments	
																			_															
	1		1			0										0	•										0							
-	5	•	5			0	•	•	_	•	•					3	3	•				•		•			2	•	-	_	•	•	•	
ower Honcut Creek	11	2	11	11	11	11	0	0	5	0	0				0	5	2	2				2		6			2	0	7	7	8	2	2	
ower Snake River	11	2	11	11	11	11	4	0	4	0	0				2	6	2	4				2 2		8		F	2	2	- '	1	10	2	2	
Pine Creek Sacramento Slough	11	2	11	11	11	11	4	0	3 3	0	0	2			2	6	1	6		0		2	2	8		5	2	2	6 4	0	11	2	2	
Vadsworth Canal	6 0	2	6	11	11	11 0	4	0	3	0	0	2			2	5				0			3	5			2	2	4	4	8	2	2	
ColusaGlenn	0					0																												
Colusa Drain	0					0																												
Colusa Drain	6	2	6	11	11	11	0	0	3	0	0	4			4	3	3	2	2	2				5	3		2	2	8	8	11	2	2	
Freshwater Creek	10	2	10	10	10	10	0	0	6	0	0				5	5	4	3	_	-		2	3	8	Ū		2	0	7	7	9	2	2	
.ogan Creek	0	_				0																												
urline Creek	4		4			0																					2							
Stone Corral Creek	4		4			0																												
Stony Creek	4	2	4																										2			2	2	
Sycamore Slough	4		4			0										5	3										2							
Valker Creek	11	2	11	11	10	11	0	0	6	0	0				3	7	5	4		0				7		4	2	0	5	7	9	2	2	
IDorado																																		
Coon Hollow Creek	2																										2							
lorth Canyon Creek	2					0																					2							
ake																																		
/IcGaugh Slough	7		7		7	0																												
/liddle Creek	7	2	7	7	7	7	0	0	0	0	0					4	1			2				6			2	0	2	2	6	2	2	
lapa																																		
Capell Creek	0					0																												

Table 4. 2014 Coalition Monitoring Year: Planned Samples, October 2013 – September 2014

October 2013 – September 2014

	SAMPL	.ING	COI		RAMETI	ERS		М	IETAL	S								PE	ESTICIE	DES IN	WATE	R									τοχι	CITY		
Waterbody	Nater Column Sample Events	sediment Sample Events	oH, conductivity, DO, temperature, flow	Turbidity, TSS, TOC	Nutrients	² athogen Indicators: <i>E. Coli</i>	trsenic (total)	ooron (total)	copper (total and dissolved)	ead (total and dissolved)	selenium (total)	ıbamectin	ızinphos-methyl	carbaryl	chlorothalonil	chlorpyrifos	diazinon	diuron	ıexazinone	nalathion	nancozeb	maneb	netolachlor	xyfluorfen	-metolachlor	simazine	-egacy OCLs	-egacy OCLs-GrpA	Ceriodaphnia, 96-h acute	oimephales, 96-hour acute	Selenastrum, 96-h short-term chronic	4yalella, 10-day short-term chronic	grain size in sediments	Pyrethroids, Chlorpyrifos, TOC in sediments
NECWA									Ŭ	-	<u> </u>																					-		
Fall River	0		0																															
Pit River	0		0																															
Pit River	2	0	2	2	2	2	0	0	0	2	0					0											0	0	0	0	0	0	0	0
PNSSNS																																		
Coon Creek	8	2	8	8	8	8	0	0	2	0	0					4											0	0	4	2	3	2	2	2
Coon Creek	4		4													4	1																	
SacramentoAmador																																		
Cosumnes River	9	2	9	9	9	9	0	0	4	0	0					5	0	4		0				4			2	2	4	4	5	2	2	2
Dry Creek	4		4			0																												
Grand Island Drain	12	2	12	12	12	12	6	0	6	0	0	3	2	4	2	7	4	4	3	2	2		2	6			2	2	9	9	10	2	2	2
Laguna Creek	4		4			0																												
ShastaTehama															_																			
Anderson Creek	10	2	10	10	10	10	0	0	2	0	0					7								6			2	0	5	5	6	2	2	2
Burch Creek	0					0																												
	3		3			0			_		_																							
Solano																																		
Shag Slough	11	2	11	11	9	11	0	4	5	0	4					5	0	4						6			2	2	3	3	6	2	2	2
Ulatis Creek	11	2	11	11	11	11	0	4	4	0	4				3	7	3	3	3					9	4	4	2	2	6	6	11	2	2	2
Z Drain	4	2	4			0																										2	2	2
UpperFeatherRiver	0					0													_															
Indian Creek	0	0	0	0	0	0	0	0	0	0	0					0											0	0	0	0	0	0	0	0
Middle Fork Feather River Spanish Creek	2	0	2	2	2	2	0	0	0	0	0					0											0	0	0	0	0	0	0	0
· ·	0					0																												
Yolo Cache Creek	4		1																										1					
Tule Canal	4 4		4 4			0		4																					4					
Willow Slough	4	2	4	10	10	10	0	4	3	0	4				6	6	3	2	2	1				6	3		2	2	7	7	11	2	2	2
Totals	208		204		162			4 16			4 12	9	2	4	27	94	35	∠ 38	∠ 10	7	2	8	8	90		13	∠ 38	∠ 18	1	84			2 34	

October 2013 – September 2014

ANALYTICAL METHODS

Water chemistry samples were analyzed for filtered and unfiltered fractions of the samples. Pesticide analyses were conducted only on unfiltered (whole) samples. Laboratories analyzing samples for this program have demonstrated the ability to meet the minimum performance requirements for each analytical method, including the ability to meet the project-specified quantitation limits (QL), the ability to generate acceptable precision and recoveries, and other analytical and quality control parameters documented in the Coalition's QAPP. Analytical methods used for chemical analyses follow accepted standard methods or approved modifications of these methods, and all procedures for analyses are documented in the QAPP or are available for review and approval at each laboratory.

Toxicity Testing and Toxicity Identification Evaluations

Water quality samples were analyzed for toxicity to *Ceriodaphnia dubia*, *Selenastrum capricornutum*, and *Pimephales promelas* (fathead minnow) for 2014 Monitoring. Sediment samples were analyzed for toxicity to *Hyalella azteca*. Toxicity tests were conducted using standard USEPA methods for these species.

- Determination of acute toxicity to *Ceriodaphnia* was performed as described in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition* (USEPA 2002a). Toxicity tests with *Ceriodaphnia* were conducted as 96-hour static renewal tests, with renewal 48 hours after test initiation.
- Determination of toxicity to *Selenastrum* was performed using the non-EDTA procedure described in *Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition* (USEPA 2002b). Toxicity tests with *Selenastrum* were conducted as a 96-hour static non-renewal test.

For all initial screening toxicity tests at each site, 100% ambient water and a control were used for the acute water column tests. If 100% mortality to a test species was observed any time after the initiation of the initial screening toxicity test, a multiple dilution test using a minimum of five sample dilutions was conducted with the initial water sample to estimate the magnitude of toxicity.

Procedures in the Coalition's QAPP state that if any measurement endpoint from any of the three aquatic toxicity tests exhibits a statistically significant reduction in survival (*Ceriodaphnia* and *Pimephales*) or cell density (*Selenastrum*) of greater than or equal to 50% compared to the control, Toxicity Identification Evaluation (TIE) procedures will be initiated using the most sensitive species to investigate the cause of toxicity. The 50% mortality threshold is consistent with the approach recommended in guidance published by USEPA for conducting TIEs (USEPA 1996b), which recommends a minimum threshold of 50% mortality because the probability of completing a successful TIE decreases rapidly for samples with less than this level of toxicity. For samples that met these trigger criteria, Phase 1 TIEs to determine the general class of constituent (*e.g.*, metal, non-polar organics) causing toxicity or pesticide-focused TIEs were conducted. TIE methods generally adhere to the documented USEPA procedures referenced in the QAPP. TIE procedures were initiated as soon as possible after toxicity is observed to reduce the potential for loss of toxicity due to extended sample storage. Procedures for initiating and conducting TIEs are documented in the QAPP.

Detection and Quantitation Limits

The Method Detection Limit (MDL) is the minimum analyte concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. The Quantitation Limit (QL) represents the concentration of an analyte that can be routinely measured in the sampled matrix within stated limits and confidence in both identification and quantitation. For this program, QLs were established based on the verifiable levels and general measurement capabilities demonstrated by labs for each method. Note that samples required to be diluted for analysis (or corrected for percent moisture for sediment samples) may have sample-specific QLs that exceed the established QLs. This is unavoidable in some cases.

Project Quantitation Limits

Laboratories generally establish QLs that are reported with the analytical results—these may be called *reporting limits*, *detection limits*, *reporting detection limits*, or several other terms by different laboratories. In most cases, these laboratory limits are less than or equal to the project QLs listed in **Table 5** and **Table 6**. Wherever possible, project QLs are lower than the proposed or existing relevant numeric water quality objectives or toxicity thresholds, as required by the *ILRP*.

All analytical results between the MDL and QL are reported as numerical values and qualified as estimates (Detected, Not Quantified (DNQ), or sometimes, "J-values").

Method	Analyte	Fraction	Units	MDL	QL	Note
Physical and Convention	nal Parameters					
EPA 130.2	Hardness, total as CaCO ₃	Unfiltered	mg/L	3	5	
EPA 180.1; SM2130B	Turbidity	Unfiltered	NTU	0.1	1.0	
SM20-2540 C	Total Dissolved Solids (TDS)	Particulate	mg/L	4	10	(a)
EPA 160.2; SM2540D	Total Suspended Solids (TSS)	Particulate	mg/L	2	3	
EPA 415.1; SM5310C	Organic Carbon, Total (TOC)	Unfiltered	mg/L	0.1	0.5	
Pathogen Indicators						
SM 9223	E. Coli bacteria	NA	MPN/100mL	2	2	
Organophosphorus Pesi	ticides					
EPA 625(m)	Azinphos methyl	Unfiltered	µg/L	0.05	0.1	
EPA 625(m)	Chlorpyrifos	Unfiltered	µg/L	0.005	0.01	
EPA 625(m)	Demeton-S	Unfiltered	µg/L	0.005	0.01	
EPA 625(m)	Diazinon	Unfiltered	µg/L	0.005	0.01	
EPA 625(m)	Dichlorvos	Unfiltered	µg/L	0.005	0.01	
EPA 625(m)	Dimethoate	Unfiltered	μg/L	0.005	0.01	
EPA 625(m)	Disulfoton	Unfiltered	µg/L	0.01	0.02	
EPA 625(m)	Ethoprop	Unfiltered	µg/L	0.001	0.002	(a)
EPA 625(m)	Fenchlorphos	Unfiltered	µg/L	0.002	0.004	(a)
EPA 625(m)	Fensulfothion	Unfiltered	µg/L	0.001	0.002	(a)
EPA 625(m)	Fenthion	Unfiltered	µg/L	0.002	0.004	(a)
EPA 625(m)	Malathion	Unfiltered	µg/L	0.005	0.01	
EPA 625(m)	Methamidophos	Unfiltered	µg/L	0.05	0.01	
EPA 625(m)	Methidathion	Unfiltered	µg/L	0.01	0.02	
EPA 625(m)	Mevinphos	Unfiltered	µg/L	0.008	0.0016	(a)
EPA 625(m)	Naled	Unfiltered	µg/L	0.2	0.5	(a)
EPA 625(m)	Parathion, Methyl	Unfiltered	µg/L	0.01	0.02	
EPA 625(m)	Parathion, Ethyl	Unfiltered	µg/L	0.01	0.02	
EPA 625(m)	Phorate	Unfiltered	µg/L	0.01	0.02	
EPA 625(m)	Phosmet	Unfiltered	µg/L	0.05	0.1	
EPA 625(m)	Sulprofos	Unfiltered	µg/L	0.001	0.002	(a)
EPA 625(m)	Tetrachlorvinphos	Unfiltered	µg/L	0.002	0.004	(a)
EPA 625(m)	Tokuthion	Unfiltered	µg/L	0.003	0.006	(a)
EPA 625(m)	Trichloronate	Unfiltered	µg/L	0.001	0.002	(a)
Organochlorine Pesticid	es					
EPA 625(m)	4,4'-DDT (o,p' and p,p')	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	4,4'-DDE (o,p' and p,p')	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	4,4'-DDD (o,p' and p,p')	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Aldrin	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Chlordane	Unfiltered	µg/L	0.001	0.005	
EPA 8081A	Chlorothalonil	Unfiltered	µg/L	0.1	0.2	(a)

 Table 5. Laboratory Method Detection Limit (MDL) and Quantitation Limit (QL) Data Quality

 Objectives for Analyses of Surface Water

Method	Analyte	Fraction	Units	MDL	QL	Note
EPA 625(m)	Dacthal	Unfiltered	µg/L	0.008	0.05	
EPA 625(m)	Dicofol	Unfiltered	µg/L	0.05	0.1	
EPA 625(m)	Dieldrin	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endosulfan I	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endosulfan II	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endosulfan sulfate	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endrin	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endrin Aldehyde	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Endrin Ketone	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	НСН	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Heptachlor	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Heptachlor epoxide	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Hexachlorobenzene	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Methoxychlor	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Mirex	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Nonachlor	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Oxychlordane	Unfiltered	µg/L	0.001	0.005	
EPA 625(m)	Perthane	Unfiltered	µg/L	0.001	0.005	
Carbamate and Urea	Pesticides					
EPA 8321	Aldicarb	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Aminocarb	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Barban	Unfiltered	µg/L	1.75	3.5	
EPA 8321	Benomyl/Carbendazim	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Carbaryl	Unfiltered	µg/L	0.05	0.07	
EPA 8321	Carbofuran	Unfiltered	µg/L	0.05	0.07	
EPA 8321	Chlorpropham	Unfiltered	µg/L	0.4	0.8	
EPA 8321	Methiocarb	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Methomyl	Unfiltered	μg/L	0.05	0.07	
EPA 8321	Mexacarbate	Unfiltered	µg/L	0.4	0.8	
EPA 8321	Oxamyl	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Propham	Unfiltered	µg/L	1.75	3.5	
EPA 8321	Propoxur	Unfiltered	µg/L	0.2	0.4	
Pyrethroid Pesticides	· · · · · · · · · · · · · · · · · · ·					
GCMS-NCI	Allethrin	Unfiltered	µg/L	0.0001	0.0015	
GCMS-NCI	Bifenthrin	Unfiltered	μg/L	0.0001	0.0015	
GCMS-NCI	Cyfluthrin	Unfiltered	µg/L	0.0002	0.0015	
GCMS-NCI	Cypermethrin	Unfiltered	μg/L	0.0002	0.0015	
GCMS-NCI	Deltamethrin/Tralomethrin	Unfiltered	μg/L	0.0002	0.003	
GCMS-NCI	Esfenvalerate/Fenvalerate	Unfiltered	μg/L	0.0002	0.003	
GCMS-NCI	Fenpropathrin	Unfiltered	μg/L	0.0002	0.0015	
GCMS-NCI	Fluvalinate	Unfiltered	μg/L	0.0002	0.0015	
GCMS-NCI	Lambda-Cyhalothrin	Unfiltered	μg/L	0.0002	0.0015	
GCMS-NCI	Permethrin	Unfiltered	μg/L	0.002	0.015	

Method	Analyte	Fraction	Units	MDL	QL	Note
GCMS-NCI	Tetramethrin	Unfiltered	µg/L	0.0002	0.0015	
Other Herbicides						
EPA 8321	Bromacil	Unfiltered	µg/L	0.2	0.4	(a)
EPA 8321	Chloroxuron	Unfiltered	µg/L	0.2	0.4	
EPA 8081A	Dacthal	Unfiltered	µg/L	0.008	0.05	
EPA 8321	Diuron	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Fenuron	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Fluometuron	Unfiltered	µg/L	0.2	0.4	
EPA 8141A	Hexazinone	Unfiltered	µg/L	0.1	0.5	(a)
EPA 8321	Linuron	Unfiltered	µg/L	0.2	0.4	
EPA 625	Merphos	Unfiltered	µg/L	0.001	0.002	(a)
EPA 625	Metolachlor	Unfiltered	µg/L	0.26	0.5	(a)
EPA 8321	Monuron	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Neburon	Unfiltered	µg/L	0.2	0.4	
EPA 8321	Oryzalin	Unfiltered	µg/L	0.2	0.4	
EPA 8081A	Oxyfluorfen	Unfiltered	µg/L	0.008	0.05	
EPA 8321	Propachlor	Unfiltered	µg/L	0.2	0.4	(a)
EPA 8321	Siduron	Unfiltered	µg/L	0.2	0.4	
EPA 625(m)	Simazine	Unfiltered	µg/L	0.005	0.01	
EPA 8321	Tebuthiuron	Unfiltered	µg/L	0.2	0.4	
Benzophenyls						
EPA 8321	Diflubenzuron	Unfiltered	µg/L	0.2	0.4	
Trace Elements						
EPA 200.8	Arsenic	Filtered, Unfiltered	µg/L	0.08	0.5	
EPA 2008	Cadmium	Filtered, Unfiltered	µg/L	0.04	0.1	
EPA 200.8	Boron	Filtered, Unfiltered	µg/L	0.04	0.1	
EPA 200.8	Copper	Filtered, Unfiltered	µg/L	0.2	0.5	
EPA 200.8	Lead	Filtered, Unfiltered	µg/L	0.02	0.25	
EPA 200.8	Selenium	Unfiltered	µg/L	0.5	1	
Nutrients						
EPA 350.1; 350.2	Ammonia, Total as N	Unfiltered	mg/L	0.02	0.1	
EPA 353.2	Nitrate + Nitrite as N	Unfiltered	mg/L	0.02	0.05	
EPA 365.2; SM4500-P E	Orthophosphate, as P	Unfiltered	mg/L	0.01	0.05	
EPA 365.2; SM4500-P E	Phosphorus, Total	Unfiltered	mg/L	0.02	0.05	
EPA 351.3; 351.2	Total Kjeldahl Nitrogen	Unfiltered	mg/L	0.07	0.1	

Note:

(a) No QL target has been established for this analyte.

Method	Analyte	Fraction	Units	MDL	QL
Physical and Conv	entional Parameters				
SM 2560D	Grain Size Analysis	NA	% fraction	NA	1
EPA 160.3	Solids (TS)	Total	%	NA	0.1
EPA 9060	Organic Carbon, Total (TOC)	Total	mg/kg d.w.	50	200
Pyrethroids					
EPA 8270C(m)	Allethrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Bifenthrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Cyfluthrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Cypermethrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Deltamethrin/Tralomethrin	Total	ng/g d.w.	0.15	1
EPA 8270C(m)	Esfenvalerate/Fenvalerate	Total	ng/g d.w.	0.15	1
EPA 8270C(m)	Fenpropathrin	Total	ng/g d.w.	0.15	1
EPA 8270C(m)	Fluvalinate	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Lambda-Cyhalothrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Permethrin	Total	ng/g d.w.	0.1	1
EPA 8270C(m)	Tetramethrin	Total	ng/g d.w.	0.1	1
Organochlorine Pe	esticides				
EPA 8270C(m)	Chlorpyrifos	Total	ng/g d.w.	0.1	3
EPA 8270C(m)	Diazinon	Total	ng/g d.w.	5	40

 Table 6. Laboratory Method Detection Limit (MDL) and Quantitation Limit (QL) Data Quality

 Objectives for Analyses of Sediments for the Coalition Monitoring and Reporting Program Plan

Monitoring Results

The following sections summarize the monitoring conducted by the Coalition and its Subwatershed partners in 2014 (October 2013 through September 2014).

SUMMARY OF SAMPLE EVENTS CONDUCTED

This report presents monitoring results from twelve Coalition sampling events (Events 92-103), as well as data for events conducted by coordinating Subwatershed monitoring programs between October 2013 and September 2014. Samples collected for all of these events are listed in **Table 7**.

The Coalition and Subwatershed monitoring events were conducted throughout the year. Analyses included water chemistry and toxicity, with pesticides monitored during months when higher use is typical. Sediment toxicity testing and/or chemistry analyses were also conducted by the Coalition at 16 sites as part of the assessment and source evaluation efforts for the Management Plan requirement for sediment toxicity. The sites and parameters for all events were monitored in accordance with the Coalition's current MRP and QAPP.

The field logs for all Coalition and Subwatershed samples collected for the October 2013 through September 2014 events, as well as associated site photographs, are provided in **Appendix A**.

This page intentionally left blank

		Sampl	le Count	92	93	94	95	96	97	98	99	100	101	102	103
Subwatershed (Agency)	Site ID	Planned	Collected	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
ButteYubaSutter (SVWQC)	BTTSL	1	1	W	-	-	-	-	-	-	-	-	-	-	-
	GILSL	6	6	-	-	W	W	-	-	-	W	-	W	W	W
	LHNCT	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
	LSNKR	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
	PNCGR	3	3	-	W	W	W	-	-	-	-	-	-	-	-
	PNCHY	8	8	-	-	-	-	W	W	W,S	W	W,S	W	W	W
	SSKNK	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
ColusaGlenn (SVWQC)	COLDR	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
	FRSHC	10	10	-	W	W	W	W	W	W,S	W	W,S	W	W	-
	LRLNC	4	4	-	-	-	-	W	-	W	-	W	-	W	-
	RARPP	6	6	-	-	-	-	-	W	W	W	-	W	W	W
	SCCMR	4	4	-	-	-	-	W	-	W	-	W	-	W	-
	STYHY	6	0	-	-	-	D	D	D	D	-	D	-	D	-
	WLKCH	11	10	-	W	W	W	W	W	W,S	W	W,S	W	W	D
ElDorado (SVWQC)	COONH	2	2	-	-	-	-	-	-	W	-	-	-	W	-
	NRTCN	2	2	-	-	-	-	-	-	W	-	-	-	W	-
Lake (SVWQC)	MDLCR	9	9	-	W	-	W	-	W	W,S	W	W,S	W	W	W
	MGSLU	7	0	-	D	-	D	-	D	D	D	D	-	D	-
PitRiver (NECWA)	FRRRB	5	5	-	С	-	-	С	-	-	С	-	-	С	W
	PRCAN	5	5	-	С	-	-	С	-	-	С	-	-	С	W
	PRPIT	6	6	-	С	-	-	С	-	-	С	W	W	С	-
PlacerNevadaSSutter	CCBRW	8	8	-	-	-	-	W	W	W,S	W	W,S	W	W	W
NSacramento (PNSSNS)	CCSTR	4	4	-	-	-	-	-	-	W	-	-	W	W	W
SacramentoAmador	CRTWN	9	4	D	-	D	D	W	W	W,S	W	D	-	D	-
(SVWQC)	DCGLT	4	2	W	-	-	-	-	-	W	-	D	-	D	-
	GIDLR	12	12	W	W	W	W	W	W	W,S	W	W,S	W	W	W
	LAGAM	4	4	W	-	-	-	-	-	W	-	W	-	W	-
ShastaTehama (SVWQC)	ACACR	10	10	-	W	-	W	W	W	W,S	W	W,S	W	W	W
. ,	COYTR	3	3	-	-	-	-	-	-	W	-	W	-	W	-
Solano (SVWQC)	SSLIB	11	11	W	W	W	W	W	W	W,S	W	W,S	W	W	-
```,	UCBRD	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
	ZDDIX	4	4	_	_	-	_	W	-	W,S	-	W,S	_	W	_

#### Table 7. Sampling for the 2014 Coalition Monitoring Year

Sacramento Valley Water Quality Coalition

Annual Monitoring Report

		Samp	le Count	92	93	94	95	96	97	98	99	100	101	102	103
Subwatershed (Agency)	Site ID	Planned	Collected	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Yolo (SVWQC)	CCCPY	4	4	-	-	-	-	W	-	W	-	W	-	W	-
	TCHWY	4	4	-	-	-	-	W	-	W	-	W	-	W	-
	WLSPL	11	11	-	W	W	W	W	W	W,S	W	W,S	W	W	W
UpperFeatherRiver (UFRW)	MFFGR	6	6	-	С	-	-	С	-	-	С	W	W	С	-
	Totals	244	223												

Notes:

NECWA = Northeastern California Watershed Association

PNSSNS = PlacerNevadaSSutterNSacramento

SVWQC = Sacramento Valley Water Quality Coalition

UFRW = Upper Feather River Watershed Group

W = Water sample collected

S = Sediment sample collected

D = Site was dry; no samples collected.

"-" = no samples planned

#### SAMPLE CUSTODY

All samples that were collected for the Coalition monitoring effort met the requirements for sample custody. Sample custody must be traceable from the time of sample collection until results are reported. A sample is considered under custody if:

- it is in actual possession;
- it is in view after in physical possession; and
- it is placed in a secure area (i.e., accessible by or under the scrutiny of authorized personnel only after in possession).

The chain-of-custody forms (COCs) for all samples collected by Coalition contractors for the monitoring events conducted from October 2013 through September 2014 are included with the related lab reports and are provided in **Appendix B**. All COCs for *ILRP* monitoring conducted by Coalition partners during this same period are also provided in **Appendix B** with their associated lab reports.

## QUALITY ASSURANCE RESULTS

The Data Quality Objectives (DQOs) used to evaluate the results of the Coalition monitoring effort are detailed in the Coalition's QAPP. These DQOs are the detailed quality control specifications for precision, accuracy, representativeness, comparability, and completeness. These DQOs are used as comparison criteria during data quality review to determine if the minimum requirements have been met and the data may be used as planned.⁷

#### Results of Field and Laboratory QA/QC Analyses

Quality Assurance/Quality Control (QA/QC) data are summarized in **Table 8** through **Table 16** and discussed below. All program QA/QC results are included with the lab reports in **Appendix B** of this document, and any qualifications of the data are presented with the tabulated monitoring data. All program monitoring results discussed are tabulated in **Appendix C**.

#### **Contamination Assessments**

Absence of sample contamination from sampling and analytical procedures was assessed by analysis of field blank and method blank samples.

#### Field Blanks

Field Blanks were collected and analyzed for all analyses (**Table 8**). The data quality objective for field blanks is no detectible concentrations of the analyte of interest above the QL. With the exceptions discussed below, analytes of interest were generally not detected in field blanks:

⁷ During the 2014 Monitoring year, the data qualification process was modified to accommodate the California Environmental Data Exchange Network (CEDEN) submittal requirements for the *ILRP* data. The discussion of quality assurance results presented herein reflects those changes and may not be directly comparable with those in past AMRs.

- Oxyfluorfen was detected above the QL in one field blank. One environmental result was affected.
- Orthophosphate as P was detected above the QL in one field blank. One environmental result was affected.
- Total organic carbon was detected above the QL in five field blank analyses. Three environmental results were affected.
- Turbidity was detected above the QL in two field blank analyses. No environmental results were affected.

#### Method Blanks

Method Blanks were analyzed for all parameters (**Table 9**). The data quality objective for method blanks is no detectible concentrations of the analyte of interest above the QL. All method blanks met this data quality objective:

#### Accuracy Assessments

Analytical accuracy was assessed based on compliance with analytical hold times, achievement of target analytical reporting limits, and analysis of laboratory control spikes, surrogate spikes, matrix spike samples.

#### Hold Times

Results were evaluated for compliance with required preparation and analytical hold times. With the exceptions discussed below, analyses met the target DQOs:

• 2 of 224 *E. coli* results were analyzed slightly outside of their 24-hour hold times. This was considered unlikely to affect the outcome of assessment of exceedances.

## Method Detection Limits and Quantitation Limits

Target Method Detection Limits (MDL) and Quantitation Limits (QL) were assessed for all parameters. With the exceptions discussed below, analyses met the target DQOs:

- 7 of 15 boron results had MDLs and QLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.
- 6 of 54 hardness as CaCO₃ results had QLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.
- 13 of 149 total Nitrate+Nitrite as N results had MDLs and QLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.
- 13 of 148 total orthophosphate as P results had QLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.
- 33 of 55 pyrethroid pesticides in sediment results had QLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.

- 1 of 151 total suspended solid results had an MDL greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.
- 52 of 151 turbidity results had MDLs greater than the project DQO due to dilutions required to analyze the samples. Assessment of exceedances was not affected.

#### Laboratory Control Spikes

Laboratory Control Spike (LCS) recoveries were analyzed for TSS, TOC, hardness, turbidity, trace metals, nutrients, and pesticides (**Table 10**). The data quality objective for an LCS is 80-120% recovery of the analyte of interest for most analytes. The DQOs for LCS recoveries of pesticides vary by analyte and surrogate and are based on the standard deviation of actual recoveries for the method. In accordance with SWAMP data reporting protocols, the data were not specifically qualified as being high- or low-biased, but these terms are used below for the purpose of discussion. With the exceptions discussed below, all analyses met their specific data quality objective:

- The results of nine LCS recovery analyses for carbamate pesticides, benzophenyls and other herbicides were outside the acceptable recovery DQO. Four of the recoveries were high biased and resulted in one environmental result being possibly affected. The other five results were low biased and potentially affected three environmental results.
- The results of seven LCS recovery analyses for organochlorine pesticides were outside the acceptable recovery DQO. One recovery was high biased, but did not affect any environmental results. The other six results were low biased and potentially affected three environmental results.
- The results of eight LCS recovery analyses for organophosphate pesticides were outside the acceptable recovery DQO. Three recoveries were high biased, and five recoveries were low biased. Only two environmental results were potentially affected as low-biased.

#### Surrogate Spike Recoveries

Surrogate recoveries were analyzed for pesticide analyses (**Table 11**). The DQOs for surrogate recoveries of pesticides vary by surrogate and are based on the standard deviation of actual recoveries for the method. In accordance with SWAMP data reporting protocols, the data were not specifically qualified as being high- or low-biased, but these terms are used below for the purpose of discussion. With the exceptions discussed below, all analyses met their specific data quality objective:

- The results of ten surrogate recovery analyses for pesticides by EPA 625 were outside the acceptable recovery DQO, and they were all considered low-biased. Four different surrogates were included with EPA 625 analyses. No samples had more than two of the surrogates exceed the recovery objectives, and results for the target pesticides in environmental samples were not significantly affected.
- The results of three surrogate recovery analyses for pesticides by EPA 8141A were outside the acceptable recovery DQO. One was considered high-biased and two were considered low-biased. Two different surrogates were included with EPA 8141A

analyses. Results for the target pesticides in environmental samples were not significantly affected.

#### Matrix Spikes

Matrix Spikes and Matrix Spike Duplicates were analyzed for trace metals, nutrients, TOC and pesticides (**Table 12**). The data quality objective for matrix spikes is 80-120% recovery of most analytes of interest. The data quality objective for matrix spike recoveries of pesticides varies for each analyte or surrogate and is based on the standard deviation of actual recoveries for the method. The data were not specifically qualified as being high- or low-biased, but these terms are used below for the purpose of discussion. With the exceptions discussed below, all analyses met their specific DQOs:

- Matrix Spike recoveries for 14 Carbamate Pesticides, Benzophenyls, and other Herbicides analyses were outside the DQO. 12 results were considered to be high-biased and two were considered to be low-biased. Two environmental results were affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for nine Nitrate+Nitrite as N analyses were outside the DQO. Eight results were considered to be high-biased and one was considered to be low-biased. Five environmental results were affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for 12 organochlorine pesticide analysis were outside the DQO. Seven results were considered to be high-biased and five were considered to be lowbiased. Three environmental results were affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for 55 organophosphate pesticide analyses were outside the DQO. A total of 35 results were high-biased and no environmental results were affected. A total of 20 results were low-biased, and five associated environmental results were potentially affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for four organophosphate pesticides in sediment analyses were outside the DQO. All four were considered low-biased and no associated environmental results were affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for two orthophosphate as P analyses were outside the DQO. All two were considered low-biased and one associated environmental was potentially affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for two pyrethroid pesticides in sediment analyses were outside the DQOs and were considered to be low-biased. One environmental result was associated with low recoveries and was potentially affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for two total organic carbon analyses were outside the DQO and were considered to be low-biased. One associated environmental result was potentially affected. Assessment of exceedances was not affected.
- Matrix Spike recoveries for four trace metals analyses were outside the DQO. One was considered to be high-biased and the other three were low-biased. Three associated

environmental results were potentially affected. Assessment of exceedances was not affected.

#### Precision

Sampling and analytical precision was assessed by analysis of duplicate field samples and duplicate analysis of environmental samples, laboratory control spikes, and matrix spike samples.

#### Field Duplicates

Field Duplicate samples were collected and analyzed for all parameters (**Table 13**). The data quality objective for a field duplicate analysis is a Relative Percent Difference (RPD) not exceeding 25% or a difference between the environmental sample and the field duplicate that is less than the QL. With the exceptions discussed below, all field duplicates met this data quality objective:

- Field duplicate RPD results exceeded the DQO for two organochlorine pesticide analyses. Both environmental results were affected. Assessment of exceedances was not affected.
- Field duplicate RPD results exceeded the DQO for five total suspended solids analyses. Five environmental results were affected. Assessment of exceedances was not affected.
- Field duplicate RPD results exceeded the DQO for two trace metals tests. Two environmental results were affected. Assessment of exceedances was not affected.
- Field duplicate RPD results exceeded the DQO for two turbidity tests. Two environmental results were affected. Assessment of exceedances was not affected.

#### Laboratory Duplicates

Laboratory Duplicates were analyzed for Nitrate + Nitrite as N, TOC, TSS, turbidity, and pesticides (**Table 14**). The data quality objective for laboratory duplicates is a Relative Percent difference (RPD) not exceeding 25%. With the exceptions discussed below, all field duplicates met this data quality objective:

- Laboratory duplicate RPD results exceeded the DQO for two organophosphate pesticide analyses. Both environmental results were affected. Assessment of exceedances was not affected.
- Laboratory duplicate RPD results exceeded the DQO for one total Kjeldahl nitrogen analysis. One environmental result was affected. Assessment of exceedances was not affected.
- Laboratory duplicate RPD results exceeded the DQO for two total suspended solids analyses. Two environmental results were affected. Assessment of exceedances was not affected.

#### Laboratory Control Spike Duplicates

Laboratory Control Spike and Laboratory Control Spike Duplicate Recoveries and their associated Relative Percent Differences (RPDs) were analyzed for trace metals, TSS, turbidity,

nutrients, and pesticides (**Table 15**). The data quality objective for matrix spike duplicates is a RPD not exceeding 25%. With the exceptions discussed below, all analyses met these DQOs:

- Laboratory control spike duplicate results exceeded the DQO for one carbamate pesticides, benzophenyls, and other herbicides RPD result. One result was affected, but it was below detection. Assessment of exceedances was not affected.
- Laboratory control spike duplicate results exceeded the DQO for three organochlorine pesticide RPD result. Three results were affected, but they were all below detection. Assessment of exceedances was not affected.
- Laboratory control spike duplicate results exceeded the DQO for 12 organophosphate pesticide RPD results. A total of 74 results were affected, but they were all below detection. Assessment of exceedances was not affected.

#### Matrix Spike Duplicates

Matrix Spike and Matrix Spike Duplicate Recoveries and their associated Relative Percent Differences (RPDs) were analyzed for trace metals, nutrients, TOC and pesticides (**Table 16**). The data quality objective for matrix spike duplicates is an RPD not exceeding 25%. With the exceptions discussed below, all analyses met these DQOs:

- Matrix spike duplicate results exceeded the DQO for six RPD results for carbamate pesticides, benzophenyls, and other herbicides. Six environmental results were affected on this basis, but all were below detection. Assessment of exceedances was not affected.
- Matrix spike duplicate results exceeded the DQO for three organochlorine pesticide RPD results. A total of three results were affected on this basis, but they were all below detection. Assessment of exceedances was not affected.
- Matrix spike duplicate results exceeded the DQO for 12 organophosphate pesticide RPD results. A total of 12 results were affected on this basis, but only one was detected above the PQL. Assessment of exceedances was not affected.
- Matrix spike duplicate results exceeded the DQO for one organophosphate pesticide in sediment RPD result. A total of one result was affected on this basis. Assessment of exceedances was not affected.

## Summary of Precision and Accuracy

Based on the QA/QC data for the 2014 Coalition Monitoring discussed above, the precision and accuracy of the majority of monitoring results met the DQOs adopted for the monitoring program, and there were no systematic sampling or analytical problems. These data are adequate for the purposes of the Coalition's monitoring program.

Of the 154 total qualified environmental data points, 116 results were associated with elevated variability in lab or field replicate analyses, 33 results were associated with *high-biased* or *low-biased* recoveries outside of DQOs, and five results were potentially affected by contamination. None of the data potentially affected by contamination exceeded a water quality standard.

With the exception of matrix spikes (93.8%), all QC sample types had success rates in excess of 95%. Of the 6,989 environmental analytical results generated from October 2013 through

September 2014, 6,835 results required no qualification, resulting in 98% of analytical results having no restrictions on their use.

## Completeness

The objectives for completeness are intended to apply to the monitoring program as a whole. As summarized in **Table 7**, 223 of the 242 initial water column and toxicity sample events planned by the Coalition and coordinating programs were conducted, for an overall sample event success rate of approximately 92%. Planned sample collection at five locations did not occur because the monitoring sites were dry or inaccessible. Planned sampling that was not completed successfully is summarized below:

- Samples for five events planned for Cosumnes River (CRTWN) were not collected because the sampling site was dry.
- Samples for two events planned for Dry Creek at Alta Mesa Rd (DCGLT) was not collected because the sampling site was dry.
- Samples for seven events planned for McGaugh Slough (MGSLU) were not collected because the sampling site was dry.
- Samples for six events planned for Stony Creek (STYHY) were not collected because the sampling site was dry.
- Samples for one event planned for Walker Creek (WLKCH) were not collected because the sampling site was dry.

Sample containers are occasionally lost or broken in transit due to shipping and handling factors beyond the Coalition's control. Broken containers are relevant to program completeness if the incident prevents the Coalition from completing the required sample analyses or if they are analyzed and may potentially affect analytical quality. In general, broken bottles do not impact completeness of analyses. In most cases, sufficient remaining sample volume is available to complete the planned environmental and quality assurance analyses. If program completeness was affected, the issue of broken bottles is discussed in the AMR. The protocol that is followed if a broken bottle is reported is to contact the sampling crew and let them know of the issue so that they may review their packing and shipping procedures. Any known shipping and handling deficiencies are also noted. If samples lost or broken in shipping affect overall completeness for specific analyses at a specific location and the analyses are relevant to synoptically collected toxicity samples, additional sample volume is preferentially aliquoted from the sample collected for toxicity. If additional sample volume from another appropriately collected and preserved sample container is not available, the analyses are rescheduled for future events to ensure program completeness objectives are met. Sample containers that were received broken are summarized below:

- One of 18 bottles (collected in January 2014 for Event 95) to be analyzed for OP pesticides was received broken at PHYSIS. There was sufficient sample remaining to complete the scheduled environmental and QA analyses.
- Three of 24 bottles (collected in June 2014 for Event 88) to be analyzed for OP pesticides were received broken at PHYSIS. There was sufficient sample remaining to complete the scheduled environmental analyses.

In addition, sample containers occasionally arrive at the analytical laboratory at a temperature that is above the recommended maximum for Coalition samples. This may occur when samples do not have sufficient time to cool down to the target temperature or when extended shipping times and higher external temperatures cause sample temperatures to increase above 6°C. This has proven to be a challenge for toxicity samples because the sample volumes are large (1 gallon containers), require additional shipping protection (bubble wrap), and take longer to cool, particularly when ambient water temperatures exceed 25°C. However, because toxicity tests are typically conducted at ~20°C over four days, sample temperatures slightly elevated above 6°C on receipt are not expected to have a significant impact on the toxicity test results. However, all samples received above recommended temperatures are qualified as required (*BY; Sample received at improper temperature*). In each case, the sampling crews are notified and the conditions and shipping procedures were reviewed to attempt to determine the cause of the elevated temperatures.

Sample shipments received at temperatures above 6°C are summarized below:

• The samples collected by Kleinfelder at SSKNK and COLDR (May 2013 for Event 99) were received by PER at 7.0°C and 6.2°C, respectively. This is above the recommended maximum temperature (6°C). Toxicity analysis was performed according to the original sampling plan, and the results were qualified (*BY*).

All samples collected were analyzed, for an analytical success rate of 100%.

As summarized in **Table 7**, all 31 sediment samples planned by the Coalition were collected, for an overall sediment sample event success rate of 100%. In addition, all analyses planned for these sediment samples were completed, for an analytical success rate of 100%.

Method	Analyte	DQO	Number of Analyses	Number Passing	% Success
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	< PQL	12	12	100%
EPA 8321A / 8081A	Carbamate Pesticides, Benzophenyls, and other Herbicides	< PQL	303	302	100%
SM20-9223	E. coli	< PQL	16	16	100%
SM20-2340C	Hardness as CaCO3	< PQL	11	11	100%
EPA 353.2	Nitrate+Nitrite, as N	< PQL	13	13	100%
EPA 625 / 8081A	Organochlorine Pesticides	< PQL	113	113	100%
EPA 625 / GCMS-NCI-SIM	Organophosphate Pesticides	< PQL	165	165	100%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	< PQL	11	10	91%
SM20-4500-P E	Phosphorus as P, Total	< PQL	7	7	100%
SM 9223 B	Total Coliforms	< PQL	2	2	100%
SM20-5310 B / SM5310C	Total Organic Carbon	< PQL	14	9	64%
SM20-2540D	Total Suspended Solids	< PQL	12	12	100%
EPA 200.8	Trace Metals	< PQL	31	31	100%
EPA 180.1 / SM 2130B	Turbidity	< PQL	12	10	83%
Totals			722	713	98.8%

#### Table 8. Summary of Field Blank Quality Control Sample Evaluations for 2014 Coalition Monitoring

			-		
Method	Analyte	DQO	Number of Analyses	Number Passing	% Success
SM20-2540 G	% Solids, in Sediment	<ql< td=""><td>3</td><td>3</td><td>100%</td></ql<>	3	3	100%
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	<ql< td=""><td>44</td><td>44</td><td>100%</td></ql<>	44	44	100%
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	<ql< td=""><td>425</td><td>425</td><td>100%</td></ql<>	425	425	100%
SM20-9223	E. coli	<ql< td=""><td>35</td><td>35</td><td>100%</td></ql<>	35	35	100%
SM20-2340C	Hardness as CaCO3	<ql< td=""><td>24</td><td>24</td><td>100%</td></ql<>	24	24	100%
EPA 353.2	Nitrate+Nitrite, as N	<ql< td=""><td>41</td><td>41</td><td>100%</td></ql<>	41	41	100%
EPA 625 / 8081A	Organochlorine Pesticides	<ql< td=""><td>223</td><td>223</td><td>100%</td></ql<>	223	223	100%
EPA 625 / 8141A	Organophosphate Pesticides	<ql< td=""><td>289</td><td>289</td><td>100%</td></ql<>	289	289	100%
GCMS-NCI-SIM	Organophosphate Pesticides, in Sediment	<ql< td=""><td>6</td><td>6</td><td>100%</td></ql<>	6	6	100%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	<ql< td=""><td>37</td><td>37</td><td>100%</td></ql<>	37	37	100%
SM20-4500-P E	Phosphorus as P, Total	<ql< td=""><td>10</td><td>10</td><td>100%</td></ql<>	10	10	100%
GCMS-NCI-SIM	Pyrethroid Pesticides, in Sediment	<ql< td=""><td>33</td><td>33</td><td>100%</td></ql<>	33	33	100%
SM20-2540 C	Total Dissolved Solids	<ql< td=""><td>1</td><td>1</td><td>100%</td></ql<>	1	1	100%
EPA 351.2	Total Kjeldahl Nitrogen	<ql< td=""><td>2</td><td>2</td><td>100%</td></ql<>	2	2	100%
SM20-5310 B / SM5310C	Total Organic Carbon	<ql< td=""><td>50</td><td>50</td><td>100%</td></ql<>	50	50	100%
Walkley-Black	Total Organic Carbon, in Sediment	<ql< td=""><td>3</td><td>3</td><td>100%</td></ql<>	3	3	100%
SM20-2540D	Total Suspended Solids	<ql< td=""><td>44</td><td>44</td><td>100%</td></ql<>	44	44	100%
EPA 200.8	Trace Metals	<ql< td=""><td>73</td><td>73</td><td>100%</td></ql<>	73	73	100%
EPA 180.1 / SM 2130B	Turbidity	<ql< td=""><td>39</td><td>39</td><td>100%</td></ql<>	39	39	100%
Totals			1382	1382	100%

#### Table 9. Summary of Method Blank Results for 2014 Coalition Monitoring

Method	Analyte	DQO	Number of Analyses	Number Passing	% Success
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	90 - 110%	82	82	100%
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	[1]	514	505	98%
SM20-2340C	Hardness as CaCO3	80 - 120%	24	24	100%
EPA 353.2	Nitrate+Nitrite, as N	90 - 110%	42	42	100%
EPA 625 / 8081A	Organochlorine Pesticides	[1]	339	332	98%
EPA 625 / 8141A	Organophosphate Pesticides	[1]	511	503	98%
GCMS-NCI-SIM	Organophosphate Pesticides, in Sediment	[1]	10	10	100%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	90 - 110%	37	37	100%
SM20-4500-P E	Phosphorus as P, Total	90 - 110%	10	10	100%
GCMS-NCI-SIM	Pyrethroid Pesticides, in Sediment	[1]	55	55	100%
SM20-2540 C	Total Dissolved Solids	80 - 120%	1	1	100%
EPA 351.2	Total Kjeldahl Nitrogen	80 - 120%	2	2	100%
SM20-5310 B/ SM5310C	Total Organic Carbon	80 - 120%	54	54	100%
Walkley-Black	Total Organic Carbon, in Sediment	80 - 120%	3	3	100%
SM20-2540D	Total Suspended Solids	80 - 120%	45	45	100%
EPA 200.8	Trace Metals	85 - 115%	75	75	100%
EPA 180.1 / SM 2130B	Turbidity	90 - 110%	39	39	100%
Totals			1843	1819	98.7%

#### Table 10. Summary of Lab Control Spike Results for 2014 Coalition Monitoring

1. Data Quality Objectives for pesticide LCS recoveries vary by parameter and are based on 3x the standard deviation of the lab's actual recoveries for each parameter.

#### Table 11. Summary of Surrogate Recovery Results for 2014 Coalition Monitoring

Method	Analytes	DQO	Number of Analyses	Number Passing	% Success
EPA 625	Organophosphorus,	[1]	528	518	98%
EPA 8081	Organochlorine, Carbamate, Benzophenyls and other	[1]	316	316	100%
EPA 8141A	Pesticides	[1]	216	213	99%
EPA 8321		[1]	102	102	100%
SW846 8270 Mod (GCMS-NCI-SIM)	Pyrethroid Pesticides	[1]	38	38	100%
Totals			1200	1187	98.9%

1. Data Quality Objectives for pesticide surrogate recoveries vary by parameter and are based on 3x the standard deviation of the lab's actual recoveries for each parameter.

Method	Analyte	DQO	Number of Analyses	Number Passing	% Success
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	90 - 110%	10	10	100%
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	[1]	606	592	98%
SM20-2340C	Hardness as CaCO3	80 - 120%	8	8	100%
EPA 353.2	Nitrate+Nitrite, as N	90 - 110%	37	28	76%
EPA 625 / 8081A	Organochlorine Pesticides	[1]	284	272	96%
EPA 625 / 8141A	Organophosphate Pesticides	[1]	408	353	87%
GCMS-NCI-SIM	Organophosphate Pesticides, in Sediment	[1]	12	8	67%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	90 - 110%	28	26	93%
SM20-4500-P E	Phosphorus as P, Total	90 - 110%	2	2	100%
GCMS-NCI-SIM	Pyrethroid Pesticides, in Sediment	[1]	66	64	97%
EPA 351.2	Total Kjeldahl Nitrogen	90 - 110%	2	2	100%
SM20-5310 B/ SM5310C	Total Organic Carbon	80 - 120%	68	66	97%
EPA 200.8	Trace Metals	85 - 115%	78	74	95%
Totals			1609	1505	93.5%

#### Table 12. Summary of Matrix Spike Recovery Results for 2014 Coalition Monitoring

1. Data Quality Objectives for pesticide matrix spike recoveries vary by parameter and are based on 3x the standard deviation of the lab's actual recoveries for each parameter.

# Table 13. Summary of Field Duplicate Quality Control Sample Results for 2014 Coalition Monitoring

Method	Analyte	DQO	Number of Pairs Analyzed	Number Passing	% Success
EPA 350.1 / SM20-4500-NH3 C	Ammonia, Total as N	RPD ≤25%	12	12	100%
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	RPD ≤25%	303	303	100%
SM20-9223	E. coli	RPD ≤25%	12	12	100%
SM20-2340C	Hardness as CaCO3	RPD ≤25%	11	11	100%
EPA 353.2	Nitrate+Nitrite, as N	RPD ≤25%	13	13	100%
EPA 625 / 8081A	Organochlorine Pesticides	RPD ≤25%	113	113	100%
EPA 625 / 8141A	Organophosphate Pesticides	RPD ≤25%	165	163	99%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	RPD ≤25%	14	14	100%
SM20-4500-P E	Phosphorus as P, Total	RPD ≤25%	8	8	100%
SM20-2540 C	Total Dissolved Solids	RPD ≤25%	1	1	100%
EPA 351.2	Total Kjeldahl Nitrogen	RPD ≤25%	1	1	100%
SM20-5310 B/ SM5310C	Total Organic Carbon	RPD ≤25%	12	12	100%
SM20-2540D	Total Suspended Solids	RPD ≤25%	16	11	69%
EPA 600/R-99-064M / 821/R- 02-012 / 821/R-02-013	Toxicity	RPD ≤25%	32	32	100%
EPA 200.8	Trace Metals	RPD ≤25%	34	32	94%
EPA 180.1 / SM 2130B	Turbidity	RPD ≤25%	16	14	88%
Totals			763	752	98.6%

Method	Analyte	DQO	Number of Pairs Analyzed	Number Passing	% Success
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	RPD ≤25%	2	2	100%
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, RPD ≤25% 6 Benzophenyls, and other Herbicides		6	100%	
EPA 353.2	Nitrate+Nitrite, as N	RPD ≤25%	1	1	100%
EPA 625 / 8081A	Organochlorine Pesticides	RPD ≤25%	87	87	100%
EPA 625 / 8141A	Organophosphate Pesticides	RPD ≤25%	183	181	99%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	RPD ≤25%	2	2	100%
SM20-2540 C	Total Dissolved Solids	RPD ≤25%	1	1	100%
EPA 351.2	Total Kjeldahl Nitrogen	RPD ≤25%	2	1	50%
SM20-5310 B/ SM5310C	Total Organic Carbon	RPD ≤25%	1	1	100%
SM20-2540D	Total Suspended Solids	RPD ≤25%	16	14	88%
EPA 180.1 / SM 2130B	Turbidity	RPD ≤25%	16	16	100%
Totals			317	312	98.4%

#### Table 14. Summary of Lab Duplicate Results for 2014 Coalition Monitoring

#### Table 15. Summary of Lab Control Spike Duplicate Precision Results for 2014 Coalition Monitoring

Method	Analyta	DQO	Number of Pairs Analyzed	Number Passing	% Success	
Wethod	Analyte	DQU	-	rassing		
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	RPD <25%	39	39	100%	
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	RPD <25%	90	89	99%	
EPA 353.2	Nitrate+Nitrite, as N	RPD <25%	3	3	100%	
EPA 625 / 8081A	Organochlorine Pesticides	RPD <25%	116	113	97%	
EPA 625 / 8141A	Organophosphate Pesticides	RPD <25%	222	210	95%	
GCMS-NCI-SIM	Organophosphate Pesticides, in Sediment	RPD <25%	4	4	100%	
EPA 365.2 / SM4500-P E	Orthophosphate, as P	RPD <25%	1	1	100%	
GCMS-NCI-SIM	Pyrethroid Pesticides, in Sediment	RPD <25%	22	22	100%	
SM20-5310 B/ SM5310C	Total Organic Carbon	RPD <25%	4	4	100%	
SM20-2540D	Total Suspended Solids	RPD <25%	1	1	100%	
EPA 200.8	Trace Metals	RPD <25%	1	1	100%	
Totals			503	487	96.8%	

Method	Analyte	DQO	Number of Pairs Analyzed	Number Passing 38	% Success 100%
EPA 350.1 / SM20-4500- NH3 C	Ammonia, Total as N	RPD ≤25%	38		
EPA 625 / 8081A / 9141A / 8321A	Carbamate Pesticides, Benzophenyls, and other Herbicides	RPD ≤25%	303	297	98%
SM20-2340C	Hardness as CaCO3	RPD ≤25%	24	24	100%
EPA 353.2	Nitrate+Nitrite, as N	RPD ≤25%	53	53	100%
EPA 625 / 8081A	Organochlorine Pesticides	RPD ≤25%	142	139	98%
EPA 625 / 8141A	Organophosphate Pesticides	RPD ≤25%	204	192	94%
GCMS-NCI-SIM	Organophosphate Pesticides, in Sediment	RPD ≤25%	6	5	83%
EPA 365.2 / SM4500-P E	Orthophosphate, as P	RPD ≤25%	34	34	100%
SM20-4500-P E	Phosphorus as P, Total	RPD ≤25%	8	8	100%
GCMS-NCI-SIM	Pyrethroid Pesticides, in Sediment	RPD ≤25%	33	33	100%
SM20-5310 B/ SM5310C	Total Organic Carbon	RPD ≤25%	75	75	100%
EPA 200.8	Trace Metals	RPD ≤25%	136	136	100%
Totals			1056	1034	97.9%

#### Table 16. Summary of Matrix Spike Duplicate Precision Results for 2014 Coalition Monitoring

## TABULATED RESULTS OF LABORATORY ANALYSES

Copies of final laboratory reports and all reported QA/QC data for Coalition monitoring results are provided in **Appendix B**. The tabulated results for all validated and Quality Assurance-evaluated (QA) data are provided in **Appendix C**. These data were previously submitted as part of the quarterly data submittals.

## SUMMARY OF SAMPLING CONDITIONS

Samples were collected throughout the year for the Coalition (see **Table 7**, Sampling for the 2014 Coalition Monitoring Year). Sample collection for the October 2013 – March 2014 monitoring period was characterized by above-average precipitation during the month of February and below-average precipitation during all other months.⁸ The 2014 water year was classified as "Critical" for the Sacramento Valley by the California Department of Water Resources, with an estimated 41% of average total runoff (based on 1961-2010 mean).^{9,10}

Sample collection for the April 2014 – September 2014 Coalition Irrigation Season was characterized by predominantly dry weather, with the only above average precipitation occurring during the months of April and September. Mean temperatures were generally warmer than historical averages; during the 2014 water year, temperatures were warmer than historical mean temperatures (1949-2005) by up to about four and a half degrees (°F).

The 2013 calendar year (January 2013 – December 2013) was recorded as California's driest calendar year in the past 119 years, with a state aggregated precipitation total of only 7 inches. The 2014 water year (October 2013 – September 2014) was recorded as the third driest for the state of California during the same historical timeframe.¹¹ Statewide, at the end of the 2014 water year, precipitation was 55 percent of average and reservoir storage was 60 percent of average.¹²

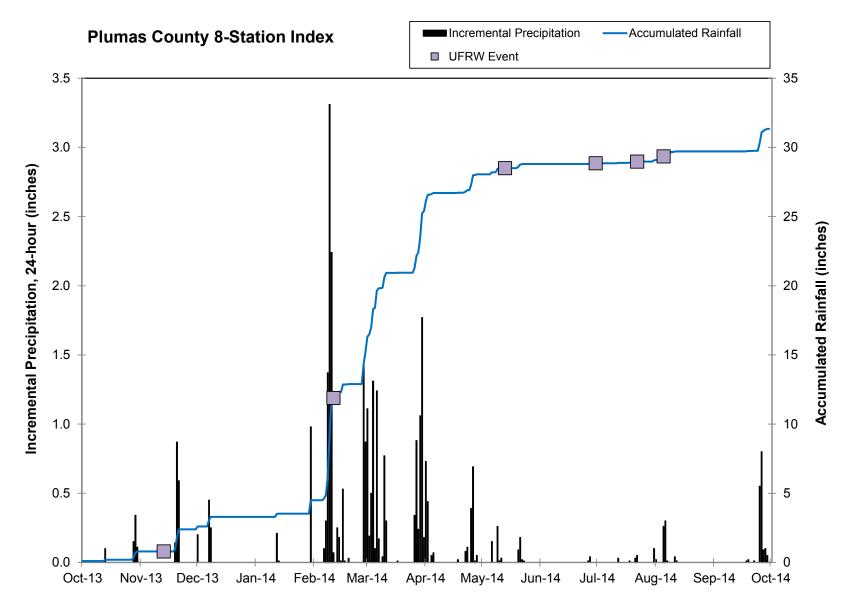
Regional precipitation patterns for October 2013 – September 2014 are illustrated in **Figure 2-a** through **Figure 2-e**. Beginning in October 2013, the 2014 water year was characterized by predominately dry weather. Several precipitation events in February, March, and April 2014 were the exception, resulting in higher storm flows (**Figure 3-a** through **Figure 3-f**). With the exception of some February, March, and April 2014 events, samples were primarily collected during low-flow hydrological conditions.

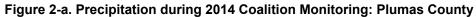
Based on climate data available for the Sacramento Executive Airport weather station, with the exception of the months of April and September, there was less than average rainfall during the April – September 2014 irrigation season (**Table 17**). No precipitation (or only trace amounts) occurred from May through August. Precipitation was below normal from October through January. The maximum temperature exceeded 90 degrees Fahrenheit on two days in April, eight days in May, 17 days in June, 22 days in July, 18 days in August, and 13 days in September.

⁸ Climate data (general trends) for the Sacramento-Delta region available at: <u>http://www.wrcc.dri.edu/monitor/cal-mon/frames_version.html</u>

⁹ <u>http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST</u>

¹⁰ Sacramento River Region unimpaired runoff, for water year 2014, was about 7.47 million acre-feet (MAF), approximately 41% of average. During water year 2013, the observed Sacramento River Region unimpaired runoff through September 30, 2012 was about 12.2 MAF, about 67% of average.


¹¹ <u>http://www.water.ca.gov/waterconditions/</u>


¹² http://www.water.ca.gov/floodmgmt/hafoo/hb/csm/docs/Monthly_Weather_Summary_092014.pdf

Month	Departure from Normal Mean Temperature	Days with Maximum Temperature ≥ 90°F	Precipitation Total (Inches)	Departure from Normal Precipitation
October 2013	-1.1	0	0	-0.95
November 2013	2.3	0	0.88	-1.20
December 2013	0.9	0	0.43	-2.82
January 2014	4.5	0	0.15	-3.49
February 2014	3.0	0	4.14	0.67
March 2014	4.1	0	1.77	-0.98
April 2014	3.1	2	1.83	0.68
May 2014	3.4	8	Trace	-0.68
June 2014	2.2	17	0.00	-0.21
July 2014	1.9	22	0.01	0.01
August 2014	0.6	18	Trace	-0.05
September 2014	2.8	13	0.46	0.17

 Table 17. Summary of Climate Data¹³ at Sacramento Executive Airport, October 2013 – September 2014

¹³ Preliminary monthly climate data (temperature and precipitation) for Sacramento Executive Airport weather station available at: <u>http://www.weather.gov/climate/index.php?wfo=sto</u>





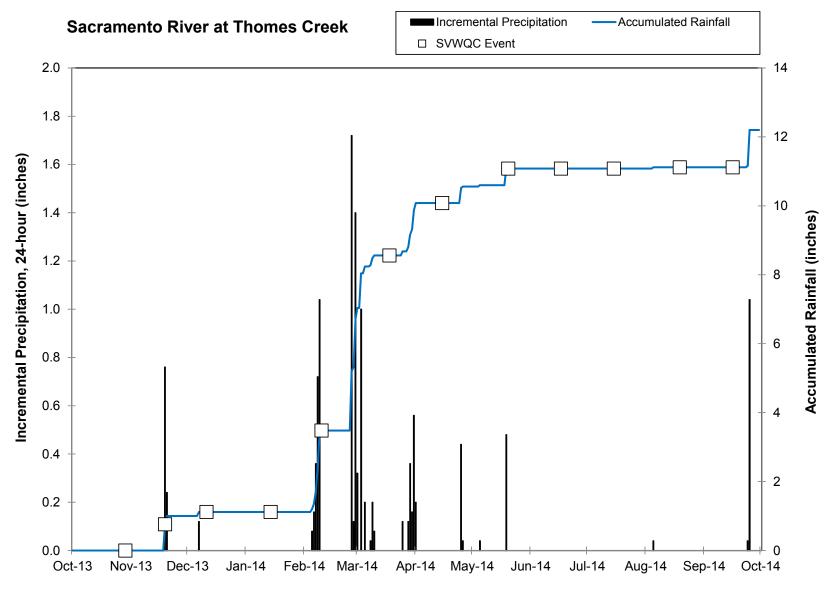
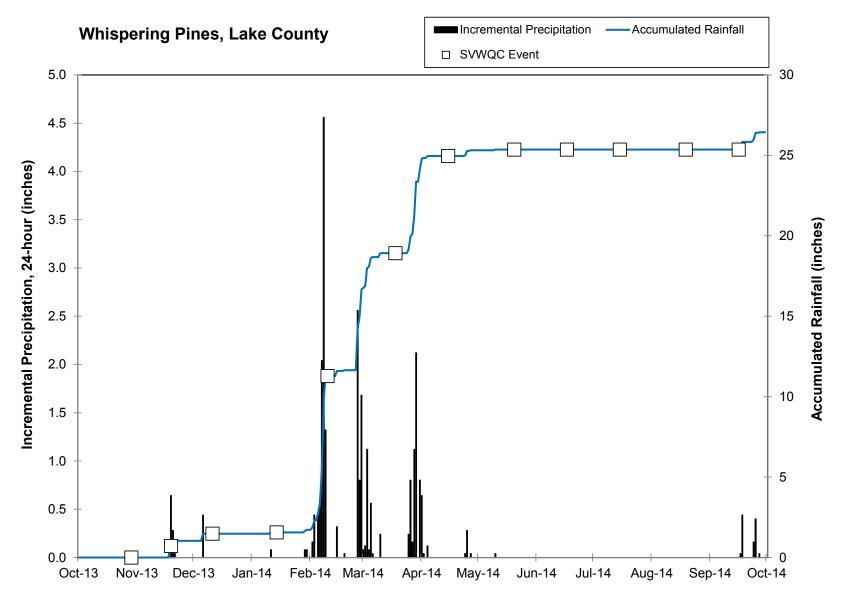




Figure 2-b. Precipitation during 2014 Coalition Monitoring: Upper Sacramento Valley

Sacramento Valley Water Quality Coalition Annual Monitoring Report





Sacramento Valley Water Quality Coalition Annual Monitoring Report

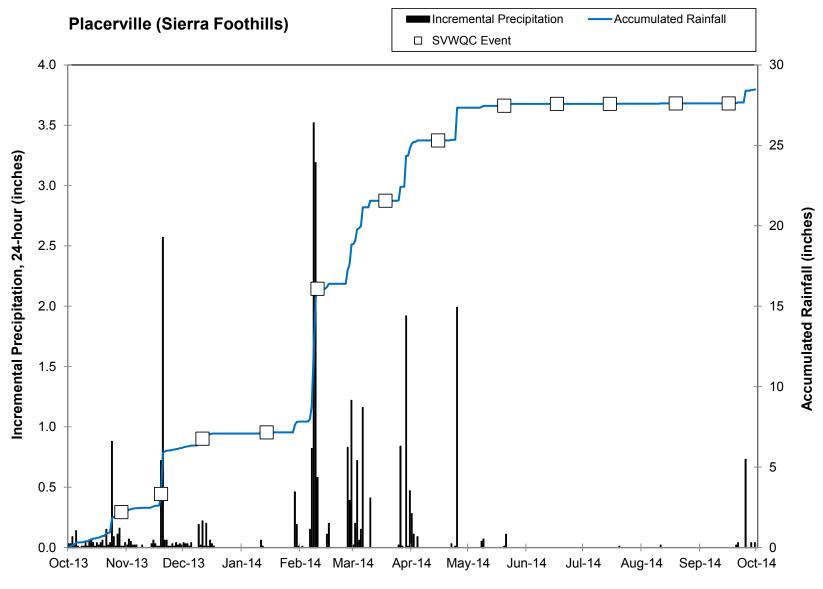



Figure 2-d. Precipitation during 2014 Coalition Monitoring: Sierra Foothills

Sacramento Valley Water Quality Coalition Annual Monitoring Report

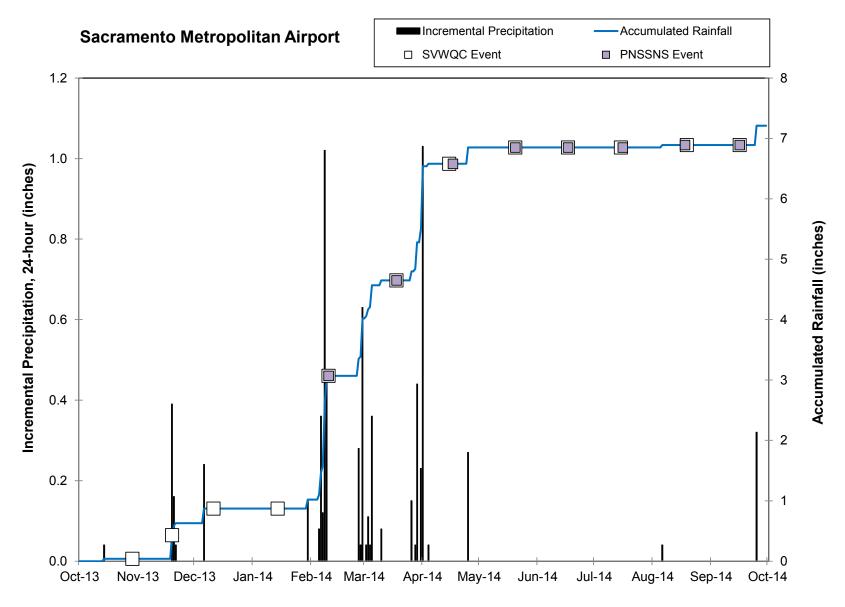
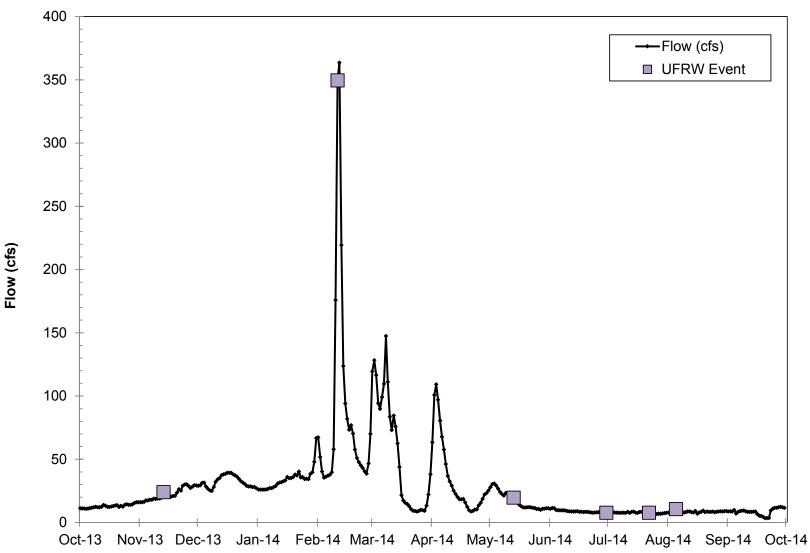




Figure 2-e. Precipitation during 2014 Coalition Monitoring: Lower Sacramento Valley

Sacramento Valley Water Quality Coalition Annual Monitoring Report



#### Middle Fork of the Feather River near Portola

Figure 3-a. Flows during 2014 Coalition Monitoring: Plumas County

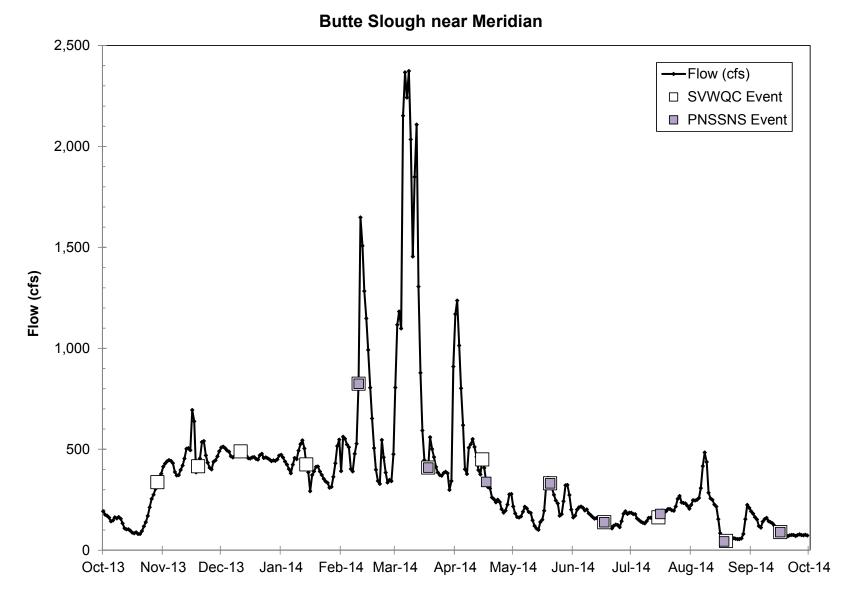
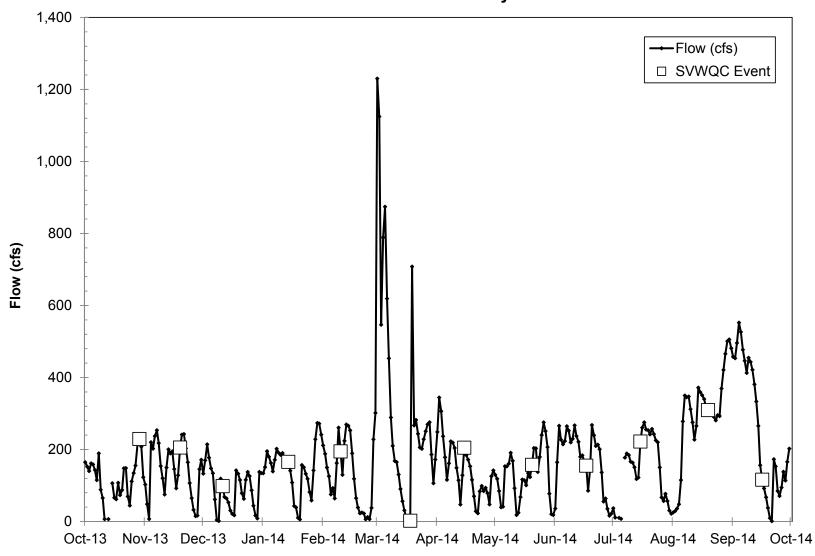
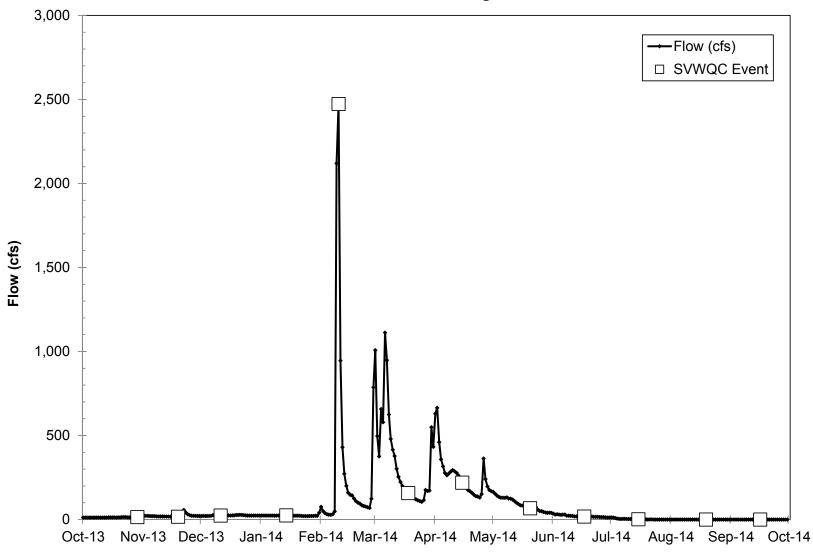




Figure 3-b. Flows during 2014 Coalition Monitoring: East Sacramento Valley


Sacramento Valley Water Quality Coalition Annual Monitoring Report



Colusa Basin Drain at Hwy 20

Figure 3-c. Flows during 2014 Coalition Monitoring: West Sacramento Valley

Sacramento Valley Water Quality Coalition Annual Monitoring Report



#### Cosumnes River at Michigan Bar

Figure 3-d. Flows during 2014 Coalition Monitoring: Lower Sacramento Valley

Sacramento Valley Water Quality Coalition Annual Monitoring Report

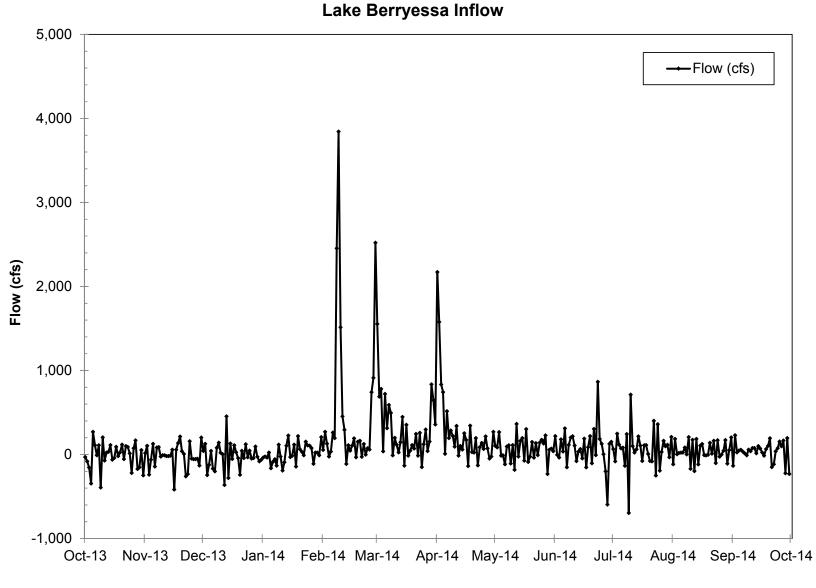



Figure 3-e. Flows during 2014 Coalition Monitoring: Lake Berryessa (Reservoir Inflow)

Sacramento Valley Water Quality Coalition Annual Monitoring Report

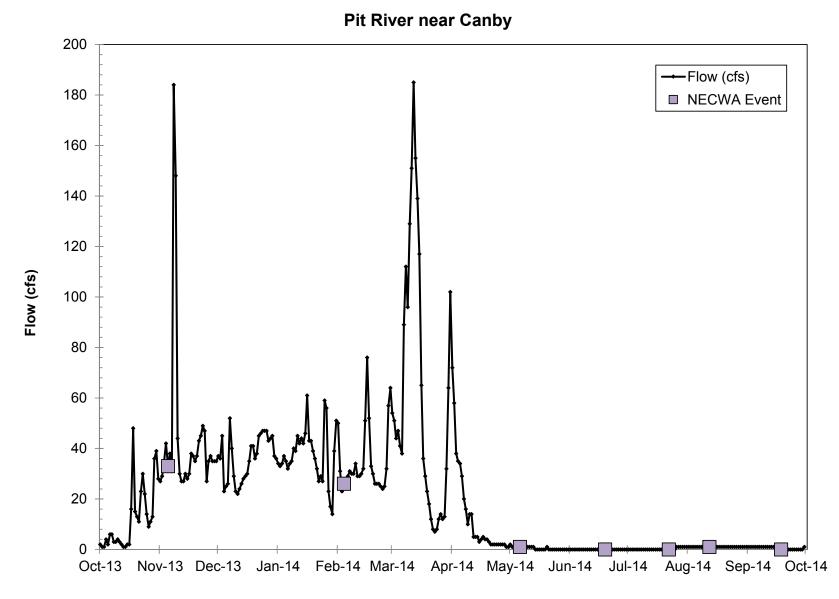



Figure 3-f. Flows during 2014 Coalition Monitoring: Pit River near Canby

Sacramento Valley Water Quality Coalition Annual Monitoring Report

This page intentionally left blank

#### ASSESSMENT OF DATA QUALITY OBJECTIVES

The QA/QC data for the Coalition's monitoring program have been evaluated and discussed previously in this document (*Quality Assurance Results*). Based on these evaluations, the program DQOs of completeness, representativeness, precision, and accuracy of monitoring data have been achieved. These results indicate that the data collected are valid and adequate to support the objectives of the monitoring program, and demonstrate compliance with the requirements of the *ILRP*. The results of these evaluations were summarized previously in **Table 8** through **Table 16**.

#### **EXCEEDANCES OF RELEVANT WATER QUALITY OBJECTIVES**

Coalition and subwatershed monitoring data were compared to *ILRP* Trigger Limits. Generally, these trigger limits are based on applicable narrative and numeric water quality objectives in the Central Valley Basin Plan (CVRWQCB 1995), subsequent adopted amendments, the California Toxics Rule (USEPA 2000), and numeric interpretations of the Basin Plan narrative objectives. Observed exceedances of the *ILRP* Trigger Limits are the focus of this discussion.

Other relevant non-regulatory toxicity thresholds were also considered for the purpose of identifying potential causes of observed toxicity. It should be noted that these unadopted non-regulatory toxicity thresholds are not appropriate criteria for determining exceedances for the purpose of the Coalition's monitoring program and evaluating compliance with the *ILRP*. The additional toxicity thresholds were acquired from USEPA's Office of Pesticide Programs (OPP) Ecotoxicity database (USEPA 2007).

Water quality objectives and other relevant water quality thresholds discussed in this section are summarized in **Table 18** and **Table 19**. Monitored analytes without relevant water quality objectives or *ILRP* Trigger Limits are listed in **Table 20**.

The data evaluated for exceedances in this document include all Coalition collected results, as well as the compiled results from the Subwatershed monitoring programs presented in this report. The results of these evaluations are discussed below.

Analyte	Most Stringent Objective ⁽¹⁾	Units	Objective Source ⁽²	
Aldicarb	3	µg/L	CA 1° MCL	
Aldrin	0.00013	μg/L	CTR	
Ammonia, Total as N	narrative	mg/L	Basin Plan	
Arsenic, total	50	µg/L	CA 1° MCL	
Cadmium, dissolved	hardness dependent ⁽³⁾	µg/L	CTR	
Carbofuran	0.4 ⁽⁴⁾	µg/L	BP	
Chlordane, cis	0.00057	µg/L	CTR	
Chlordane, trans	0.00057	µg/L	CTR	
Chlorpyrifos	0.015	µg/L	Basin Plan	
Copper, dissolved	hardness dependent ⁽³⁾	µg/L	CTR	
DDD (o,p' and p,p')	0.00083	µg/L	CTR	
DDE (o,p' and p,p')	0.00059	µg/L	CTR	
DDT (o,p' and p,p')	0.00059	µg/L	CTR	
Diazinon	0.10	µg/L	Basin Plan	
Dieldrin	0.00014	µg/L	CTR	
Dissolved Oxygen	5	mg/L	Basin Plan	
Endosulfan I	110	µg/L	CTR	
Endosulfan II	110	µg/L	CTR	
Endosulfan sulfate	110	µg/L	CTR	
Endrin	0.036	µg/L	CTR	
Endrin aldehyde	0.76	µg/L	CTR	
НСН	0.0039	µg/L	CTR	
Heptachlor	0.00021	μg/L	CTR	
Heptachlor epoxide	0.0001	µg/L	CTR	
Lead, dissolved	hardness dependent ⁽³⁾	µg/L	CTR	
Malathion	0.1 ⁽⁴⁾	µg/L	Basin Plan	
Methoxychlor	30	µg/L	CA 1° MCL	
Nitrate, as N	10	mg/L	CA 1° MCL	
Oxamyl	50	µg/L	CA 1° MCL	
Parathion, Methyl	0.13 ⁽⁴⁾	µg/L	Basin Plan	
рН	6.5-8.5	-log[H+]	Basin Plan	
Selenium, total	5.0	µg/L	CTR	
Temperature	narrative	µg/L	Basin Plan	
Toxicity, Algae ( <i>Hyalella</i> ) Survival	narrative	µg/L	Basin Plan	
Toxicity, Algae ( <i>Selenastrum</i> ) Cell Density	narrative	µg/L	Basin Plan	

## Table 18. Adopted Basin Plan and California Toxics Rule Objectives for Analytes Monitored for 2014 Coalition Monitoring

Analyte	Most Stringent Objective ⁽¹⁾	Units	Objective Source ⁽²⁾
Toxicity, Fathead minnow ( <i>Pimephales</i> ) Survival	narrative	µg/L	Basin Plan
Toxicity, Water Flea ( <i>Ceriodaphnia</i> ) Survival	narrative	μg/L	Basin Plan
Turbidity	narrative	µg/L	Basin Plan

Notes:

1. For analytes with more than one limit, the most limiting applicable adopted water quality objective is listed.

CA 1° MCLs are California's Maximum Contaminant Levels for treated drinking water; CTR = California Toxics Rule criteria.
 Objective varies with the hardness of the water.

4. These values are Basin Plan performance goals. The Basin Plan states: "...discharge is prohibited unless the discharger is following a management practice approved by the Board." This has been interpreted as an *ILRP* Trigger Limit of ND (Not Detected).

## Table 19. Unadopted Water Quality Limits Used to Interpret Narrative Water Quality Objectives for Analytes Monitored for 2014 Coalition Monitoring

Analyte	Unadopted Limit ⁽¹⁾	Units	Limit Source
Boron, total	700	µg/L	Ayers and Westcott 1988
Conductivity	900	µS/cm	CA Recommended 2° MCL
E. coli ⁽¹⁾	235	MPN/100mL	Basin Plan Amendment
Conductivity	700	µS/cm	Ayers and Westcott 1988
Total Dissolved Solids	500	mg/L	CA Recommended 2° MCL
Total Dissolved Solids	450	mg/L	Ayers and Westcott 1988
Azinphos methyl	0.01	µg/L	USEPA NAWQC ⁽²⁾
Carbaryl	2.53	µg/L	USEPA NAWQC
Dichlorvos	0.085	µg/L	Cal/EPA Cancer Potency Factor
Dimethoate	1	µg/L	CDPH Notification Level ⁽³⁾
Disulfoton	.05	µg/L	USEPA NAWQC
Diuron	2	µg/L	USEPA Health Advisory
Linuron	1.4	µg/L	USEPA IRIS Reference Dose
Methamidophos	0.35	µg/L	USEPA IRIS Reference Dose
Methidathion	0.7	µg/L	USEPA IRIS Reference Dose
Methiocarb	0.5	µg/L	USFW Acute Toxicity
Methomyl	0.52	µg/L	USEPA NAWQC
Phorate	0.7	µg/L	NAS Health Advisory
Phosmet	140	µg/L	USEPA IRIS Reference Dose

Note:

1. Adopted by the Water Board but not approved by State Water Resources Control Board

2. USEPA National Ambient Water Quality Criteria

3. Notification levels (formerly called "action levels") are published by the California Department of Public Health (CDPH) for chemicals for which there is no drinking water MCL.

# Table 20. Analytes Monitored for 2014 Coalition Monitoring without Applicable Adopted or Unadopted Limits

	Analytes	
% Solids	Fenchlorphos	Orthophosphate, as P
Allethrin	Fenpropathrin	Oryzalin
Aminocarb	Fensulfothion	Oxychlordane
Barban	Fenthion	Oxyfluorfen
Benomyl/Carbendazim	Fenuron	Permethrin
Bifenthrin	Fluometuron	Perthane
Bromacil	Fluvalinate	Phosphorus as P, Total
Chlorothalonil	Hardness as CaCO3	Propachlor
Chloroxuron	Hexachlorobenzene	Propham
Chlorpropham	Hexazinone	Propoxur
Cyfluthrin	L-Cyhalothrin	Siduron
Cypermethrin	Metolachlor	Sulprofos
Dacthal	Mevinphos	Tebuthiuron
Deltamethrin/Tralomethrin	Mexacarbate	Tetrachlorvinphos
Demeton	Mirex	Tetramethrin
Dicofol	Monuron	Tokuthion
Diflubenzuron	Naled	Total Coliforms
Discharge (flow)	Neburon	Total Kjeldahl Nitrogen
Endrin Ketone	Nitrate+Nitrite, as N	Total Organic Carbon
Esfenvalerate/Fenvalerate	Nonachlor, cis-	Total Suspended Solids
Ethoprop	Nonachlor, trans-	Trichloronate

#### **Toxicity and Pesticide Results**

A summary of the toxicity and pesticide results from 2014 Coalition Monitoring is provided in this section.

#### Toxicity Exceedances in Coalition Monitoring

There were 363 individual toxicity results (including 34 field duplicates) analyzed in water column and sediment samples collected from 18 different sites during 2014 Coalition Monitoring. Analyses were conducted for *Selenastrum capricornutum, Pimephales promelas, Ceriodaphnia dubia,* and *Hyalella azteca.* Within these categories, there were seven sediment toxicity exceedances. The observations of sediment toxicity to *Hyalella* were considered exceedances of the Basin Plan narrative objective for toxicity ("All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life.").

All statistically significant results for samples collected during 2014 Coalition Monitoring were reported to the Water Board by the Coalition in "Exceedance Reports" as required by the *ILRP* and the Coalition's MRP. The Exceedance Reports detailing these results are provided in **Appendix D**.

Statistically significant toxicity was not observed in any of the 330 individual toxicity results analyzed in water column samples collected from 17 different sites in 2014 Coalition Monitoring (298 results plus 32 field duplicates).

There were a total of 33 sediment toxicity samples (including two duplicate samples) collected from 16 different sites in 2014 Coalition Monitoring. Seven samples (including one field duplicate) exhibited statistically significant toxicity to *Hyalella azteca*. Significant toxicity to *Hyalella azteca* was observed at four sites (Colusa Basin Drain, Grand Island Drain, Ulatis Creek, and Z-Drain) in April 2014 and three sites (Freshwater Creek, Lower Honcut Creek, and Lower Snake River) in August 2014. Only two of the samples (Lower Snake River and Grand Island) exhibited toxicity that exceeded the 20% effect threshold recommended by SWAMP to evaluate toxicity in sediment.¹⁴ Samples exhibiting statistically significant sediment toxicity are summarized in **Table 21**.

¹⁴ Approval letter for completion of the Cosumnes River *Hyalella* toxicity management plan (January 22, 2015)

Water Body	Sample Date	Analyte	% of Control
Colusa Basin Drain above KL	4/15/2014	Hyalella azteca Survival	92
Grand Island Drain near Leary Road	4/15/2014	Hyalella azteca Survival	25
Ulatis Creek at Brown Road	4/15/2014	Hyalella azteca Survival	94
Z Drain	4/15/2014	Hyalella azteca Survival	87
Freshwater Creek at Gibson Rd ¹	8/20/2014	Hyalella azteca Survival	86
Lower Honcut Creek at Hwy 70	8/20/2014	Hyalella azteca Survival	90
Lower Snake R. at Nuestro Rd	8/20/2014	Hyalella azteca Survival	1
	Colusa Basin Drain above KL Grand Island Drain near Leary Road Ulatis Creek at Brown Road Z Drain Freshwater Creek at Gibson Rd ¹ Lower Honcut Creek at Hwy 70	Colusa Basin Drain above KL4/15/2014Grand Island Drain near Leary Road4/15/2014Ulatis Creek at Brown Road4/15/2014Z Drain4/15/2014Freshwater Creek at Gibson Rd18/20/2014Lower Honcut Creek at Hwy 708/20/2014	Colusa Basin Drain above KL4/15/2014Hyalella azteca SurvivalGrand Island Drain near Leary Road4/15/2014Hyalella azteca SurvivalUlatis Creek at Brown Road4/15/2014Hyalella azteca SurvivalZ Drain4/15/2014Hyalella azteca SurvivalFreshwater Creek at Gibson Rd ¹ 8/20/2014Hyalella azteca SurvivalLower Honcut Creek at Hwy 708/20/2014Hyalella azteca Survival

Table 21. Toxicity Exceedances in Sediment in 2014 Coalition Monitoring

Note:

1. Field duplicate

Significantly toxic results and any follow-up evaluations or testing conducted on the samples are summarized by event below.

#### Event 98, April 2014 – Colusa Basin Drain, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 92% compared to control at Colusa Basin Drain. Although the low level of toxicity observed in the samples (<20% reduction compared to control) did not trigger any follow-up evaluations or analyses, sediment chemistry was conducted on this sample at the request of the subwatershed. Three pyrethroid pesticides were detected (bifenthrin, lambda-cyhalothrin, permethrin), accounting for an estimated 0.28 Toxic Units (TUs) in the sample, with bifenthrin contributing approximately 90% of the estimated TUs. TUs were estimated based on published LC50s for pyrethroids and chlorpyrifos in sediment¹⁵, normalized for organic carbon concentrations.

#### Event 98, April 2014 – Grand Island Drain, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 25% compared to control at Grand Island Drain. The toxicity observed in the sample ( $\geq$ 20% reduction compared to control) triggered follow-up sediment analyses for pyrethroid and organophosphate pesticides. Four pesticides were detected in this sample: chlorpyrifos (1.2 ng/g dw); cypermethrin (4.5 ng/g dw); esfenvalerate/fenvalerate (0.87 ng/g dry weight (dw)); and L-cyhalothrin (0.52 ng/g dw). A total of 0.517 TUs of agricultural use pyrethroids and chlorpyrifos were likely responsible for the toxicity observed at GIDLR, and cypermethrin concentrations accounted for approximately 85% of the estimated TUs.

#### Event 98, April 2014 – Ulatis Creek, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 94% compared to control at Ulatis Creek. The low level of toxicity observed in the samples (<20% reduction compared to control) did not trigger any follow-up evaluations or analyses. No potential causes of the toxicity were investigated.

¹⁵ Weston, D.P., Jackson, C.J., 2009. Use of engineered enzymes to identify organo- phosphate and pyrethroidrelated toxicity in toxicity identification evaluations. Environmental Science and Technology 43, 5514–5520.

#### Event 98, April 2014 – Z-Drain, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 87% compared to control at Z-Drain. The low level of toxicity observed in the samples (<20% reduction compared to control) did not trigger any follow-up evaluations or analyses. No potential causes of the toxicity were investigated.

#### Event 102, August 2014 – Freshwater Creek, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 86% compared to control at Freshwater Creek. The low level of toxicity observed in the samples (<20% reduction compared to control) did not trigger any follow-up evaluations or analyses. No potential causes of the toxicity were investigated.

#### Event 102, August 2014 – Lower Honcut Creek, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 90% compared to control at Lower Honcut Creek. The low level of toxicity observed in the samples (<20% reduction compared to control) did not trigger any follow-up evaluations or analyses. No potential causes of the toxicity were investigated.

#### Event 102, August 2014 – Lower Snake River, Hyalella toxicity

In a sediment toxicity test conducted with *Hyalella*, the Coalition observed survival of 1% compared to control at Lower Snake River. The toxicity observed in the sample ( $\geq$ 20% reduction compared to control) triggered follow-up sediment analyses for pyrethroid and organophosphate pesticides. The only pesticide detected in this sample (lambda-cyhalothrin, 0.27 ng/g dw) was estimated to account for a total of 0.055 Toxic Units (TUs) and did not appear to be responsible for the observed toxicity.

#### Pesticides Detected in Coalition Monitoring

There were 4,251 individual pesticide results analyzed in 185 water column samples (including 28 duplicates) collected from 22 different sites, including both Representative and Management Plan or Special Study sites, during 2014 Coalition Monitoring. Analyses were conducted for organophosphates, carbamates, organochlorines, benzophenyls, pyrethroids, and a variety of herbicides. Within these monitored categories, 14 different pesticides were detected (76 total detected results) in 56 separate samples (including 11 field duplicates) collected for Coalition monitoring. Approximately 70% of samples had no detected pesticides, and more than 98.2% of all pesticide results were below detection.

It should be noted that detections of pesticides are not equivalent to exceedances (with the exception of malathion, which has a prohibition of discharge in the Basin Plan). Three registered pesticides (chlorpyrifos, diazinon, and malathion) exceeded applicable water quality objectives or *ILRP* Trigger Limits in a total of six Coalition monitoring samples (including one field duplicate). In addition, breakdown products of the legacy pesticide DDT [DDD(p,p), DDE(p,p), and DDT(p,p)] were detected above applicable water quality objectives in a total of six samples from three sites.

There were also 65 individual pesticide results for five sediment samples from five different sites during 2014 Coalition Monitoring. Analyses were conducted for organophosphate and pyrethroid

pesticides in sediment. Within these categories, seven different pesticides were detected in the five separate samples collected for Coalition monitoring. More than 75% of the results were below detection in sediment samples. There are currently no *ILRP* Trigger Limits or adopted sediment quality objectives for pesticides in sediment.

#### Discussion of Pesticides Detected in Water Column in Coalition Monitoring

All pesticides detected in water column samples for 2014 Coalition Monitoring are listed in **Table 22**. Pesticides were compared to relevant numeric and narrative water quality objectives, and to toxicity threshold concentrations published in USEPA's *ECOTOX Database (USEPA 2007; accessed on multiple occasions in 2015)*. A discussion of these detections and exceedances follow below.

- The herbicide bromacil was detected in one sample from one site (Walker Creek). There is currently no *ILRP* Trigger Limits or adopted water quality objective for bromacil. This detection did not exceed the Office of Pesticide Programs' benchmark of 6.8 µg/L.¹⁶
- The insecticide carbaryl was detected in three samples from one site (Grand Island Drain). Two of these detections were below the reporting limit. Carbaryl did not exceed the unadopted USEPA National Ambient Water Quality Criteria limit (2.53  $\mu$ g/L) in any sample.
- The insecticide chlorpyrifos was detected in 22 samples, including two field duplicates, from 11 different sites. Chlorpyrifos exceeded the Basin Plan Amendment chronic objective (0.015 μg/L) in four of these samples (including one field duplicate at Grand Island Drain) from three sites (Grand Island Drain, Gilsizer Slough, Pine Creek).
  - <u>Grand Island Drain (Event 96)</u>: There were 8 reported applications of chlorpyrifos in the month prior to the February 10, 2014 exceedance. Chlorpyrifos was applied to approximately 174 acres of apples in the Grand Island Drain drainage during the month of February 2014. All of the applications were made on February 7, 2014, three days prior to the observed exceedance, and all were ground applications. Although standing water was present in the drain, there was no observable or detectable flow at this site. The area received approximately 2.8 inches of rain¹⁷ in the month preceding the exceedance, 2.64 inches of which occurred in the five days preceding the exceedance. Toxicity tests for *Ceriodaphnia, Pimephales,* and *Selenastrum* were performed with this sample, and no toxicity was observed.
  - <u>Pine Creek (Event 100)</u>: There were 56 reported applications of chlorpyrifos in the month prior to the June 18, 2014 exceedance. Chlorpyrifos was applied to approximately 8,288 acres of walnuts in the Pine Creek drainage during that time. Although standing water was present in the creek, there was no observable flow at this site. The area received only trace amounts of rain¹⁸ in the month preceding

¹⁶ http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm

¹⁷ Based on precipitation data from CDEC site "Georgiana Slough (GGS)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=ggs</u>)

¹⁸ Based on precipitation data from CDEC site "Chico (CHI)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=chi</u>)

the exceedance. Approximately 424 acres of walnuts were treated aerially [239 on May 18, 2014 (average wind speed = 14 mph) and 185 on June 16, 2014 (two days before the exceedance) (average wind speed = 14 mph)]. Due to the lack of precipitation and flow at this site, the detected chlorpyrifos in this sample was likely due to residual drift from the aerial applications. Toxicity tests for *Ceriodaphnia, Pimephales,* and *Selenastrum* were performed with this sample, and no toxicity was observed.

- <u>Gilsizer Slough (Event 101)</u>: There were 11 reported applications of chlorpyrifos in the month prior to the July 15, 2014 exceedance. Chlorpyrifos was applied to approximately 291 acres of walnuts in the Gilsizer Slough drainage during the months of June and July. Although standing water was present in the creek, there was no observable flow at this site. The area received no rain¹⁹ in the month preceding the exceedance. No aerial applications were performed. No toxicity tests were performed for these samples.
- DDD (p,p), a breakdown product of the legacy pesticide DDT, was detected in one sample from Lower Honcut Creek. DDD (p,p) exceeded the CTR objective (0.00083 µg/L) in this sample. A second DDT breakdown product, DDE (p,p), was detected in three samples from three sites (Coon Hollow Creek, Gilsizer Slough, and Lower Honcut Creek). DDE (p,p) exceeded the CTR objective (0.00059 µg/L) in all three samples. Another DDT breakdown product, DDT (p,p), was detected in two samples from two sites (Coon Hollow Creek and Lower Honcut Creek). DDT (p,p) exceeded the CTR objective (0.00059 µg/L) in both samples.
  - All uses of DDT have been banned in the United States since 1972, except for control of emergency public health problems.²⁰ No toxicity tests were performed for these samples.
- The insecticide diazinon was detected in two samples from Grand Island Drain (including one field duplicate). Diazinon exceeded the Basin Plan Amendment chronic objective (0.1 µg/L) in these samples.
  - <u>Grand Island Drain (Event 92)</u>: There were 22 reported applications of diazinon in the month prior to the October 29, 2013 exceedance. Diazinon was applied to approximately 897 acres of pears in the Grand Island Drain drainage during the month of October 2013. The majority of the applications (1,902 pounds to 714 acres) were made between October 23 and 29, just prior to the observed exceedance. All were ground applications. Although standing water was present in the drain, there was no observable or detectable flow at this site. The general Sacramento area did not receive any rain²¹ in the month preceding the

¹⁹ Based on precipitation data from CDEC site "Bear River Near Wheatland (BRW)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=brw</u>)

²⁰ Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological Profile for DDT. U.S. Department of Health and Human Services. September 2002.

²¹ Preliminary monthly climate data (temperature and precipitation) for Sacramento Executive Airport weather station available at: <u>http://www.weather.gov/climate/index.php?wfo=sto.</u> The preliminary precipitation data

exceedance. Toxicity tests for *Ceriodaphnia* and *Pimephales* were performed with this sample, and no toxicity was observed.

- The insecticide dichlorvos was detected in one sample at Lower Honcut Creek. This detection did not exceed the Cal/EPA Cancer Potency Factor (0.085 µg/L). Dichlorvos is not typically used directly as an agricultural pesticide, but is a degradate of the more commonly used pesticides naled and trichlorfon.
- The insecticide dimethoate was detected in seven samples from three sites (Cosumnes River, Grand Island Drain, and Rough and Ready Pumping Plant). No detections exceeded the California Department of Public Health Notification Level (1.0 µg/L).
- The herbicide diuron was detected in six samples from four sites (Pine Creek, Ulatis Creek, Walker Creek, and Willow Slough). Diuron did not exceed the narrative objective (2 µg/L) in these samples.
- The insecticide malathion was detected in one sample (Middle Creek). Detection of malathion is an exceedance of the Basin Plan prohibition.
  - There were 24 reported applications of malathion to more than 253 acres of walnuts and 1,230 acres of wild rice in the Middle Creek drainage in the month prior to the exceedance observed on September 16, 2014. The area received no rain²² in the month preceding the exceedance, and all applications were made by ground. The detected concentration (0.0115  $\mu$ g/L) is below concentrations expected to cause toxicity to sensitive invertebrates (0.5  $\mu$ g/L *Daphnia magna* 2-day EC50, USEPA ECOTOX database). Toxicity tests for *Ceriodaphnia* and *Pimephales* were performed with this sample, and no toxicity was observed.
- The herbicide metolachlor was detected in three samples (including one field duplicate) from two sites. There is currently no *ILRP* Trigger Limit or adopted water quality objective for metolachlor.
- The herbicide oryzalin was detected below the reporting limit in two samples (including one field duplicate) from one site. There is currently no *ILRP* Trigger Limit or adopted water quality objective for oryzalin.
- The herbicide oxyfluorfen was detected in 19 samples (including two field duplicates) from eight sites. Of these, 16 were below the reporting limit. There is currently no *ILRP* Trigger Limits or adopted water quality objective for oxyfluorfen.

available from nearby CDEC sites "Georgiana Slough (GGS)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=ggs</u>) and "Correctional Ctr (CRT)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=crt</u>) contain outliers and are not reliable.

²² Based on precipitation data from CDEC site "High Glade (HYG)" (<u>http://cdec.water.ca.gov/cdecstation/?staid=hyg</u>)

Site ID	Date	Analyte	Resu	lt ⁽¹⁾ (µg/L)	Trigger Limit ⁽²⁾	Basis for Limit ⁽³⁾
WLKCH	4/16/2014	Bromacil	=	0.62	NA	
GIDLR	2/10/2014	Carbaryl	DNQ	0.064	2.53	USEPA NAWQC
GIDLR	4/15/2014	Carbaryl	=	0.071	2.53	USEPA NAWQC
GIDLR	4/15/2014	Carbaryl ⁽⁴⁾	DNQ	0.066	2.53	USEPA NAWQC
GIDLR	2/10/2014	Chlorpyrifos	=	0.11	0.015	BPA (chronic)
GIDLR	2/10/2014	Chlorpyrifos ⁽⁴⁾	=	0.16	0.015	BPA (chronic)
GIDLR	5/20/2014	Chlorpyrifos	=	0.0034	0.015	BPA (chronic)
UCBRD	5/20/2014	Chlorpyrifos	=	0.0095	0.015	BPA (chronic)
GIDLR	6/17/2014	Chlorpyrifos	=	0.003	0.015	BPA (chronic)
GIDLR	6/17/2014	Chlorpyrifos	=	0.0028	0.015	BPA (chronic)
UCBRD	6/17/2014	Chlorpyrifos ⁽⁴⁾	=	0.0024	0.015	BPA (chronic)
PNCHY	6/18/2014	Chlorpyrifos	=	0.1867	0.015	BPA (chronic)
GIDLR	7/15/2014	Chlorpyrifos	=	0.0058	0.015	BPA (chronic)
GILSL	7/15/2014	Chlorpyrifos	=	0.091	0.015	BPA (chronic)
RARPP	7/15/2014	Chlorpyrifos	=	0.001	0.015	BPA (chronic)
LHNCT	7/16/2014	Chlorpyrifos	=	0.0015	0.015	BPA (chronic)
LSNKR	7/16/2014	Chlorpyrifos	=	0.0029	0.015	BPA (chronic)
PNCHY	7/17/2014	Chlorpyrifos	=	0.0077	0.015	BPA (chronic)
WLKCH	7/17/2014	Chlorpyrifos	=	0.0029	0.015	BPA (chronic)
ACACR	8/20/2014	Chlorpyrifos	=	0.0029	0.015	BPA (chronic)
GILSL	8/20/2014	Chlorpyrifos	=	0.0142	0.015	BPA (chronic)
LHNCT	8/20/2014	Chlorpyrifos	=	0.0049	0.015	BPA (chronic)
LSNKR	8/20/2014	Chlorpyrifos	=	0.0076	0.015	BPA (chronic)
RARPP	8/20/2014	Chlorpyrifos	DNQ	0.0008	0.015	BPA (chronic)
MDLCR	8/21/2014	Chlorpyrifos	=	0.0016	0.015	BPA (chronic)
CCSTR	9/16/2014	Chlorpyrifos	=	0.0017	0.015	BPA (chronic)
LHNCT	8/20/2014	DDD(p,p)	=	0.0058	0.00083	CTR
COONH	8/19/2014	DDE(p,p)	=	0.006	0.00059	CTR
GILSL	8/20/2014	DDE(p,p) ⁽⁵⁾	DNQ	0.0015	0.00059	CTR
LHNCT	8/20/2014	DDE(p,p) ⁽⁵⁾	DNQ	0.0016	0.00059	CTR
COONH	8/19/2014	DDT(p,p) ⁽⁵⁾	DNQ	0.0015	0.00059	CTR
LHNCT	8/20/2014	DDT(p,p) ⁽⁵⁾	DNQ	0.0027	0.00059	CTR
GIDLR	10/29/2013	Diazinon	=	0.155	0.1	BPA (chronic)
GIDLR	10/29/2013	Diazinon ⁽⁴⁾	=	0.167	0.1	BPA (chronic)
LHNCT	8/20/2014	Dichlorvos	=	0.0071	0.085	Cal/EPA Cancer Potenc Factor
CRTWN	3/18/2014	Dimethoate	=	0.0195	1	CDPH Notification Level

Table 22. Pesticides Detected in 2014 Coalition Monitoring

Site ID	Date	Analyte	Resu	lt ⁽¹⁾ (µg/L)	Trigger Limit ⁽²⁾	Basis for Limit ⁽³⁾
GIDLR	3/18/2014	Dimethoate	=	0.571	1	CDPH Notification Leve
GIDLR	4/15/2014	Dimethoate	=	0.0171	1	CDPH Notification Leve
GIDLR	5/20/2014	Dimethoate	=	0.0161	1	CDPH Notification Leve
GIDLR	5/20/2014	Dimethoate	=	0.021	1	CDPH Notification Leve
RARPP	5/20/2014	Dimethoate	=	0.1985	1	CDPH Notification Leve
WLSPL	5/21/2014	Dimethoate ⁽⁴⁾	=	0.0208	1	CDPH Notification Leve
RARPP	7/15/2014	Dimethoate	=	0.033	1	CDPH Notification Leve
PNCGR	11/20/2013	Diuron	DNQ	0.22	2	USEPA Health Advisory
PNCGR	12/12/2013	Diuron	DNQ	0.27	2	USEPA Health Advisory
PNCGR	1/15/2014	Diuron ⁽⁴⁾	DNQ	0.24	2	USEPA Health Advisory
UCBRD	2/10/2014	Diuron	DNQ	0.29	2	USEPA Health Advisory
UCBRD	2/10/2014	Diuron	DNQ	0.28	2	USEPA Health Advisory
WLSPL	2/11/2014	Diuron	=	0.7	2	USEPA Health Advisory
WLKCH	4/16/2014	Diuron	=	0.71	2	USEPA Health Advisory
GIDLR	2/10/2014	Diuron ⁽⁴⁾	=	0.4	2	USEPA Health Advisory
MDLCR	9/16/2014	Malathion	=	0.0115	ND ⁽⁶⁾	BPA (acute)
UCBRD	5/20/2014	Metolachlor	=	2.86734	NA	
SSKNK	6/17/2014	Metolachlor	=	0.17307	NA	
UCBRD	6/17/2014	Metolachlor ⁽⁴⁾	=	0.51178	NA	
UCBRD	2/10/2014	Oryzalin	DNQ	0.3	NA	
UCBRD	2/10/2014	Oryzalin ⁽⁴⁾	DNQ	0.29	NA	
LHNCT	11/20/2013	Oxyfluorfen	DNQ	0.019	NA	
FRSHC	11/21/2013	Oxyfluorfen	DNQ	0.01	NA	
COLDR	2/10/2014	Oxyfluorfen	DNQ	0.024	NA	
GIDLR	2/10/2014	Oxyfluorfen	DNQ	0.032	NA	
GIDLR	2/10/2014	Oxyfluorfen	DNQ	0.024	NA	
LSNKR	2/10/2014	Oxyfluorfen	DNQ	0.02	NA	
UCBRD	2/10/2014	Oxyfluorfen	DNQ	0.024	NA	
FRSHC	2/11/2014	Oxyfluorfen	DNQ	0.027	NA	
PNCHY	2/11/2014	Oxyfluorfen	DNQ	0.013	NA	
WLSPL	2/11/2014	Oxyfluorfen	DNQ	0.014	NA	
FRSHC	3/19/2014	Oxyfluorfen	DNQ	0.022	NA	
FRSHC	4/17/2014	Oxyfluorfen	DNQ	0.014	NA	
FRSHC	4/17/2014	Oxyfluorfen	DNQ	0.015	NA	
WLSPL	4/17/2014	Oxyfluorfen	=	0.18	NA	
FRSHC	5/20/2014	Oxyfluorfen ⁽⁴⁾	DNQ	0.018	NA	
PNCHY	5/21/2014	Oxyfluorfen	DNQ	0.017	NA	

Site ID	Date	Analyte	Result ⁽¹⁾ (µg/L)		Trigger Limit ⁽²⁾	Basis for Limit ⁽³⁾
PNCHY	5/21/2014	Oxyfluorfen ⁽⁴⁾	DNQ	0.013	NA	
WLSPL	6/18/2014	Oxyfluorfen	=	0.078	NA	
WLSPL	6/18/2014	Oxyfluorfen	=	0.073	NA	

BOLD = Exceedance

1. "DNQ" (Detected Not Quantified) indicates that the detected value was less than the quantitation or reporting limit (QL).

2. Water Quality Objective or Narrative Interpretation Limits for ILRP. "NA" if no ILRP limit established.

3. Water Quality Objective Basis: BP = Central Valley Basin Plan; BPA = Basin Plan Amendment;

Cal/EPA = Cal/EPA Cancer Potency Factor; CDPH Notification Level = Notification levels (formerly called "action levels") are published by the California Department of Public Health (CDPH) for chemicals for which there is no drinking water MCL; CTR = California Toxics Rule; Narrative = unadopted limits used to interpret Basin Plan narrative objectives by the Central Valley Regional Board; USEPA Health Advisory = Drinking water health advisory.

4. Field duplicate sample

 Detections of the analyte (i.e., above the MDL) that are below the limit of quantitation (QL) are qualified as Detected, Not Quantified or DNQ. Since the MDL for this constituent is greater than the *ILRP* Trigger Limit, all detections (including DNQ values) are exceedances.

 The Basin Plan states: "...discharge is prohibited unless the discharger is following a management practice approved by the Board." This has been interpreted as an *ILRP* Trigger Limit of ND (Not Detected). The Basin Plan performance goal for malathion is 0.1 µg/L.

#### Pesticides Detected in Sediment in Coalition Monitoring

All detected pesticide concentrations for sediment chemistry analyses are included in **Table 23**. There are currently no *ILRP* Trigger Limits or adopted sediment quality objectives for pesticides in sediment.

- Bifenthrin was detected in three sediment samples from three different sites (Colusa Basin Drain, Ulatis Creek, and Z-Drain) and likely contributed to the sediment toxicity observed in some April 2014 samples based on detected concentrations and known toxicity thresholds for *Hyalella*.
  - <u>Colusa Basin Drain (Event 98)</u>: Sediment chemistry was conducted on this sample at the request of the subwatershed, although the low level of toxicity observed in this sample (8% reduction compared to control) did not trigger any follow-up evaluations or analyses. The majority of the detected pyrethroid concentration in this sample was bifenthrin. Bifenthrin contributed 0.26 TUs of the total 0.283 TUs estimated for this sample (see *Toxicity Exceedances in Coalition Monitoring*).
  - <u>Ulatis Creek (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was bifenthrin. Bifenthrin contributed 0.296 TUs of the total 0.575 TUs estimated for this sample and was likely partially responsible for the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
  - <u>Z-Drain (Event 98)</u>: Sediment chemistry was conducted on this sample at the for the active management plan, although the low level of toxicity observed in this sample (13% reduction compared to control) did not trigger any follow-up evaluations or analyses. Approximately half of the detected pyrethroid concentration in this sample was bifenthrin. Bifenthrin contributed 0.141 TUs of the total 0.317 TUs estimated for this sample and likely contributed to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- Chlorpyrifos was detected in two sediment samples from two sites (Grand Island Drain, Ulatis Creek). Chlorpyrifos concentrations detected in these samples did not appear to have been elevated sufficiently to cause or contribute significantly to sediment toxicity.
  - <u>Grand Island Drain (Event 98)</u>: A portion of the detected pesticide concentration in this sample was chlorpyrifos. Chlorpyrifos contributed 0.015 TUs of the total 0.517 TUs estimated for this sample and was unlikely to have contributed significantly to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
  - <u>Ulatis Creek (Event 98)</u>: A portion of the detected pesticide concentration in this sample was chlorpyrifos. Chlorpyrifos contributed 0.008 TUs of the total 0.575 TUs estimated for this sample and was unlikely to have contributed significantly to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).

- Cyfluthrin was detected in one sediment sample from Ulatis Creek and likely contributed to the sediment toxicity observed in the April 2014 sample based on detected concentrations and known toxicity thresholds for *Hyalella*.
  - <u>Ulatis Creek (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was cyfluthrin. Cyfluthrin contributed 0.100 TUs of the total 0.575 TUs estimated for this sample and probably contributed to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- Cypermethrin was detected one sediment sample from Grand Island Drain and likely contributed to the sediment toxicity observed in the April 2014 sample based on detected concentrations and known toxicity thresholds for *Hyalella*.
  - <u>Grand Island Drain (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was cypermethrin. Cypermethrin contributed 0.439 TUs of the total 0.517 TUs estimated for this sample and was likely primarily responsible for the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- Esfenvalerate/Fenvalerate was detected in two sediment samples from two sites (Grand Island Drain, Z-Drain), but probably did not contribute significantly to the sediment toxicity observed in the April 2014 samples based on detected concentrations and known toxicity thresholds for *Hyalella*.
  - <u>Grand Island Drain (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was esfenvalerate/fenvalerate. Esfenvalerate/fenvalerate contributed 0.021 TUs of the total 0.517 TUs estimated for this sample and was unlikely to have contributed significantly to *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
  - <u>Z-Drain (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was esfenvalerate/fenvalerate. Esfenvalerate/fenvalerate contributed 0.013 TUs of the total 0.317 TUs estimated for this sample and was unlikely to have contributed significantly to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- L-Cyhalothrin was detected in five sediment samples from five different sites (Colusa Basin Drain, Grand Island Drain, Lower Snake River, Ulatis Creek, and Z-Drain). Three of five values were below the reporting limit.
  - <u>Colusa Basin Drain (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was L-cyhalothrin. L-cyhalothrin contributed 0.021 TUs of the total 0.283 TUs estimated for this sample and was unlikely to have contributed significantly to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
  - <u>Grand Island Drain (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was L-cyhalothrin. L-cyhalothrin contributed 0.043 TUs of the total 0.517 TUs estimated for this sample and probably did not contribute significantly

to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).

- <u>Lower Snake River (Event 102)</u>: The only detected pyrethroid concentration in this sample was L-cyhalothrin. L-cyhalothrin contributed 0.055 TUs of the total 0.517 TUs estimated for this sample and probably did not contribute significantly to *Hyalella* toxicity observed in the August 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- <u>Ulatis Creek (Event 98)</u>: A portion of the detected pyrethroid concentration in this sample was L-cyhalothrin. L-cyhalothrin contributed 0.168 TUs of the total 0.575 TUs estimated for this sample and probably contributed to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- <u>Z-Drain (Event 98)</u>: Approximately half of the detected pyrethroid concentration in this sample was L-cyhalothrin. L-cyhalothrin contributed 0.163 TUs of the total 0.317 TUs estimated for this sample and probably contributed to the *Hyalella* toxicity observed in the April 2014 sample (see *Toxicity Exceedances in Coalition Monitoring*).
- Permethrin was detected at levels below the reporting limit in two sediment samples from two sites (Colusa Basin Drain, Ulatis Creek). Detected concentrations were unlikely to have contributed significantly to toxicity.

Site ID	Date Sampled	Analyte	Result ⁽¹⁾ (	ng/g d.w.)
COLDR	4/15/2014	Bifenthrin	=	1
UCBRD	4/15/2014	Bifenthrin	=	2
ZDDIX	4/15/2014	Bifenthrin	=	1.1
GIDLR	4/15/2014	Chlorpyrifos	DNQ	1.2
UCBRD	4/15/2014	Chlorpyrifos	DNQ	0.31
UCBRD	4/15/2014	Cyfluthrin	=	1.4
GIDLR	4/15/2014	Cypermethrin	=	4.5
GIDLR	4/15/2014	Esfenvalerate/Fenvalerate	DNQ	0.87
ZDDIX	4/15/2014	Esfenvalerate/Fenvalerate	DNQ	0.29
COLDR	4/15/2014	L-Cyhalothrin	DNQ	0.073
GIDLR	4/15/2014	L-Cyhalothrin	DNQ	0.52
LSNKR	8/20/2014	L-Cyhalothrin	DNQ	0.27
UCBRD	4/15/2014	L-Cyhalothrin	=	0.98
ZDDIX	4/15/2014	L-Cyhalothrin	=	1.1
COLDR	4/15/2014	Permethrin	DNQ	0.16
UCBRD	4/15/2014	Permethrin	DNQ	0.56

Table 23. Pesticides Detected in Sediment in 2014 Coalition Monitoring

Note:

1. "DNQ" (Detected Not Quantified) indicates that the detected value was greater than the method detection limit (MDL) but less than the quantitation or reporting limit (QL).

#### **Other Coalition-Monitored Water Quality Parameters**

Exceedances of adopted Basin Plan objectives, CTR criteria, or *ILRP* Trigger Limits were observed for conductivity, dissolved oxygen, *E. coli*, nutrients (total ammonia as N and nitrate + nitrite as N), pH, and trace metals during 2014 Coalition Monitoring (**Table 24**).

#### Conductivity

Conductivity was monitored in 222 samples, including eight field duplicate samples, from 36 Coalition sites. There were a total of 62 conductivity exceedances in samples collected from 17 different sites. Conductivity exceeded the unadopted UN Agricultural Goal (700  $\mu$ S/cm) in a total of 61 samples (including two field duplicates) and also exceeded the California recommended 2° MCL (900  $\mu$ S/cm) for drinking water in 36 of the 62 samples. The six exceedances (including two field duplicates) at Middle Fork Feather River (MFFGR) were based on an *ILRP* Trigger Limits of 150  $\mu$ S/cm, which was determined by a Site Specific 90th Percentile Limit. Eleven of the exceedances were observed at Willow Slough (WLSPL), ten were observed at Colusa Basin Drain (COLDR), and ten were observed at Ulatis Creek (UCBRD).

#### Dissolved Oxygen

During 2014 Coalition Monitoring, dissolved oxygen was measured in 219 samples, including six field duplicate samples, from 36 sites. Dissolved oxygen concentrations were below the Basin Plan lower limit of 5.0 mg/L for waterbodies with a WARM designated beneficial use in 24 samples (including two field duplicates) from 12 sites and below the Basin Plan lower limit of 7.0 mg/L for waterbodies with a COLD designated beneficial use in an additional 32 samples (including three field duplicates) from 15 sites.

Dissolved oxygen exceedances were caused primarily by low flows, stagnant conditions, or extensive submerged aquatic vegetation in some cases. The low flows and stagnant conditions have the potential to increase diurnal variability or limit oxygen production by instream algae and also to trap organic particulates that contribute to instream oxygen consumption.

#### E. coli Bacteria

*E. coli* bacteria were monitored in 163 samples, including 12 field duplicate samples, from 18 sites. *E. coli* results exceeded the single sample maximum objective (235 MPN/100mL) in 37 samples (including two field duplicates) from 15 different Coalition locations.

The Basin Plan objectives are intended to protect contact recreational uses where ingestion of water is probable (e.g., swimming). Agricultural lands commonly support a large variety (and very large numbers seasonally) of birds and other wildlife. These avian and wildlife resources are known to be significant sources of *E. coli* and other bacteria in agricultural runoff and irrigation return flows. Other potential sources of *E. coli* include, but are not limited to, cattle, horses, septic systems, treated wastewater, and urban runoff.

#### Nutrients

Nutrients monitored during 2014 Coalition Monitoring included nitrate + nitrite as N, total ammonia as N, orthophosphate as P, total Kjeldahl nitrogen, and total phosphorus. Nutrients

were monitored in 178 samples, including 27 field duplicate samples, from 18 different Coalition sites.

Total ammonia as N exceeded the Basin Plan objective (0.19 mg/L) in one sample from Walker Creek (WLKCH). Nitrate + nitrite as N results exceeded the Basin Plan objective (10 mg/L) in two samples from two sites, Grand Island Drain (GIDLR) and Ulatis Creek (UCBRD). There are no applicable water quality objectives (adopted or unadopted) for orthophosphate as P, total Kjeldahl nitrogen, or total phosphorus.

#### pН

During 2014 Coalition Monitoring, pH was measured in 221 samples, including eight field duplicate samples, from 36 Coalition sites. pH exceeded the Basin Plan maximum of 8.5 standard pH units (-log[H+]) in four Coalition samples collected from four sites and exceeded the Basin Plan minimum of 6.5 pH units in three Coalition samples at three sites.

The Basin Plan limit for pH is intended to be assessed based on "…*an appropriate averaging period that will support beneficial uses*" (CVRWQCB 1995). This parameter typically exhibits significant natural diurnal variation over 24 hours in natural waters with daily fluctuations controlled principally by photosynthesis, rate of respiration, and buffering capacity of the water. These processes are controlled by light and nutrient availability, concentrations of organic matter, and temperature. These factors combine to cause increasing pH during daylight hours and decreasing pH at night. Diurnal variations in winter are typically smaller because less light is available and there are lower temperatures and higher flows. Irrigation return flows may influence this variation primarily by increasing or decreasing in-stream temperatures or by increasing available nutrients or organic matter.

All pH exceedances occurred between April and September, during the irrigation season. The reason for these pH exceedances was not immediately obvious or easily determined. In most cases, the marginal pH exceedances were likely due primarily to in-stream algal respiration, caused in part by low flows or ponded and stagnant conditions.

#### Trace Metals

Trace metals monitored during 2014 Coalition Monitoring included both unfiltered metals (total arsenic, boron, copper, lead, and selenium) and filtered metals (dissolved cadmium, copper, and lead). Total trace metals were monitored in 94 samples (including 18 field duplicates) from 16 Coalition sites, and dissolved metals were monitored in 61 samples (including four field duplicates) from 15 Coalition sites.

#### Arsenic

Arsenic was monitored in 40 samples (including nine field duplicates) from seven Coalition sites (Fall River, Grand Island Drain, Lower Snake River, Middle Fork Feather River, Pitt River at Canby Bridge and Pittville, and Sacramento Slough). Nine samples (including three field duplicates) from three sites (Grand Island Drain, Lower Snake River, and Pit River at Canby Bridge) exceeded the California 1° MCL (50  $\mu$ g/L).

There are both legacy and a few current sources of arsenic. There is very little remaining agricultural use of arsenic-based pesticide products (based on review of DPR's PUR data), and arsenic has only a few potentially significant sources: (1) natural background from arsenic in the

soils, and (2) arsenic remaining from legacy lead arsenate use in orchards, (3) arsenic used in various landscape maintenance and structural pest control applications (non-agriculture), and (4) arsenic used in wood preservatives. One possible source is the wooden bridge structure just upstream of the Grand Island Drain sampling site, if arsenic-based preservatives were used in the wood. A final, but somewhat unlikely, source is an arsenic-based additive that may still be used for chicken feed²³ and which can potentially make its way through the chicken and into agricultural fields and runoff if the poultry litter is used on the field.

#### Boron

Boron was monitored in 21 samples (including six field duplicates) from four different Coalition sites. Nine samples (including two field duplicates) at two sites (Tule Canal, Willow Slough) exceeded the *ILRP* Trigger Limit (700  $\mu$ g/L, based on Ayers and Westcott).

Boron is a naturally-occurring mineral that is not applied by agriculture, but it is elevated in some irrigation supplies (especially groundwater), and soils and concentrations may be elevated through consumptive use of irrigation water. It is known to be naturally elevated in the groundwater and major tributaries supplying irrigation water in the Willow Slough drainage.

#### Copper

Dissolved copper was monitored in 55 samples (including four field duplicates) from 14 different Coalition sites. Dissolved copper exceeded the site-specific, hardness-dependent CTR objective in three samples (including one field duplicate) from two sites (Coon Creek, Lower Honcut Creek).

Copper is widely used by agriculture as a fungicide, but it also occurs naturally in soils and is commonly used for maintenance of septic systems. In the Lower Honcut drainage, the heaviest agricultural use typically occurs in April and May, with the bulk of applications on walnuts, rice, and olives. In the Coon Creek drainage, the highest use occurs from April through June, with  $\sim$ 80% of applications to rice, and most of the remaining applications to walnuts.

#### Selenium

Selenium was monitored in 15 samples (including four field duplicates) from three different Coalition sites. Selenium exceeded the CTR objective (5  $\mu$ g/L) in one sample from one site (Willow Slough).

Selenium is a naturally-occurring mineral that is not applied by agriculture, but it is elevated in some irrigation supplies (especially groundwater), and soils and concentrations may be elevated through consumptive use of irrigation water. It is known to be naturally elevated in the groundwater supplying irrigation water in the Willow Slough drainage.

²³ http://water.usgs.gov/owq/AFO/proceedings/afo/pdf/Wershaw.pdf

Site ID	Sample Date	Analyte	Units	Result	Trigger Limit ⁽¹⁾	Basis for Limit ⁽²⁾	Mgt Plan ⁽³
WLKCH	8/20/2014	Ammonia, Total as N	mg/L	0.2	0.19	BP T&O	No
GIDLR	10/29/2013	Arsenic	µg/L	13	10	1° MCL ⁽⁵⁾	Active
GIDLR	10/29/2013	Arsenic ⁽⁶⁾	µg/L	13	10	1° MCL ⁽⁵⁾	Active
GIDLR	11/19/2013	Arsenic	µg/L	14	10	1° MCL ⁽⁵⁾	Active
GIDLR	11/19/2013	Arsenic ⁽⁶⁾	µg/L	14	10	1° MCL ⁽⁵⁾	Active
GIDLR	3/18/2014	Arsenic	µg/L	17	10	1° MCL ⁽⁵⁾	Active
GIDLR	5/20/2014	Arsenic	µg/L	12	10	1° MCL ⁽⁵⁾	Active
GIDLR	5/20/2014	Arsenic ⁽⁶⁾	µg/L	12	10	1° MCL ⁽⁵⁾	Active
LSNKR	3/18/2014	Arsenic	µg/L	11	10	1° MCL ⁽⁵⁾	No
PRCAN	11/4/2014	Arsenic	µg/L	21.9	10	1° MCL ⁽⁵⁾	No
TCHWY	2/10/2014	Boron	µg/L	820	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	4/16/2014	Boron	µg/L	710	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	5/20/2014	Boron ⁽⁶⁾	µg/L	820	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	5/21/2014	Boron	µg/L	830	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	8/19/2014	Boron	µg/L	1600	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	8/19/2014	Boron ⁽⁶⁾	µg/L	1700	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	1/14/2014	Boron	µg/L	2800	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	2/11/2014	Boron	µg/L	1600	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	3/18/2014	Boron	µg/L	2000	700, 900 ⁽⁴⁾	Narrative	Active
CCCPY	2/11/2014	Conductivity	µS/cm	1345	700, 900 ⁽⁴⁾	Narrative	Active
CCCPY	4/17/2014	Conductivity	µS/cm	956	700, 900 ⁽⁴⁾	Narrative	Active
CCCPY	6/18/2014	Conductivity	µS/cm	993	700, 900 ⁽⁴⁾	Narrative	Active
CCCPY	8/21/2014	Conductivity	µS/cm	1090	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	11/19/2013	Conductivity	µS/cm	909	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	12/11/2013	Conductivity	µS/cm	981	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	1/14/2014	Conductivity	µS/cm	1064	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	2/10/2014	Conductivity	µS/cm	1031	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	3/18/2014	Conductivity	µS/cm	1017	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	4/15/2014	Conductivity	µS/cm	1029	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	6/17/2014	Conductivity	µS/cm	723	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	6/17/2014	Conductivity ⁽⁶⁾	µS/cm	722	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	7/15/2014	Conductivity	µS/cm	782	700, 900 ⁽⁴⁾	Narrative	Active
COLDR	7/15/2014	Conductivity ⁽⁶⁾	µS/cm	783	700, 900 ⁽⁴⁾	Narrative	Active
FRSHC	11/21/2013	Conductivity	µS/cm	887	700, 900 ⁽⁴⁾	Narrative	Active
FRSHC	12/12/2013	Conductivity	µS/cm	847	700, 900 ⁽⁴⁾	Narrative	Active
FRSHC	1/15/2014	Conductivity	µS/cm	1010	700, 900 ⁽⁴⁾	Narrative	Active
FRSHC	2/11/2014	Conductivity	µS/cm	742	700, 900 ⁽⁴⁾	Narrative	Active
GIDLR	2/10/2014	Conductivity	µS/cm	1030	700, 900 ⁽⁴⁾	Narrative	Active
GIDLR	3/18/2014	Conductivity	µS/cm	803	700, 900 ⁽⁴⁾	Narrative	Active
GILSL	7/15/2014	Conductivity	µS/cm	979	700, 900 ⁽⁴⁾	Narrative	Active

## Table 24. Other Physical, Chemical, and Microbiological Parameters Observed to Exceed Numeric Objectives in 2014 Coalition Monitoring

Site ID	Sample Date	Analyte	Units	Result	Trigger Limit ⁽¹⁾	Basis for Limit ⁽²⁾	Mgt Plan ⁽³⁾
GILSL	8/20/2014	Conductivity	µS/cm	767	700, 900 ⁽⁴⁾	Narrative	Active
LRLNC	2/11/2014	Conductivity	µS/cm	966	700, 900 ⁽⁴⁾	Narrative	Active
LRLNC	4/17/2014	Conductivity	µS/cm	862	700, 900 ⁽⁴⁾	Narrative	Active
LSNKR	4/17/2014	Conductivity	µS/cm	752	700, 900 ⁽⁴⁾	Narrative	No
MFFGR	11/13/2013	Conductivity	µS/cm	201	150	Narrative	Active
MFFGR	5/13/2014	Conductivity	µS/cm	187	150	Narrative	Active
MFFGR	5/13/2014	Conductivity ⁽⁶⁾	µS/cm	185	150	Narrative	Active
MFFGR	7/22/2014	Conductivity ⁽⁶⁾	µS/cm	182.3	150	Narrative	Active
MFFGR	8/5/2014	Conductivity	µS/cm	207	150	Narrative	Active
MFFGR	8/5/2014	Conductivity	µS/cm	199	150	Narrative	Active
PNCGR	1/15/2014	Conductivity	µS/cm	789	700, 900 ⁽⁴⁾	Narrative	Active
RARPP	3/18/2014	Conductivity	µS/cm	870	700, 900 ⁽⁴⁾	Narrative	Active
RARPP	4/15/2014	Conductivity	µS/cm	821	700, 900 ⁽⁴⁾	Narrative	Active
RARPP	8/20/2014	Conductivity	µS/cm	777	700, 900 ⁽⁴⁾	Narrative	Active
RARPP	9/16/2014	Conductivity	µS/cm	880	700, 900 ⁽⁴⁾	Narrative	Active
SCCMR	2/11/2014	Conductivity	µS/cm	1215	700, 900 ⁽⁴⁾	Narrative	Active
SCCMR	4/17/2014	Conductivity	µS/cm	854	700, 900 ⁽⁴⁾	Narrative	Active
SSLIB	4/15/2014	Conductivity	µS/cm	725	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	4/16/2014	Conductivity	µS/cm	1122	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	6/17/2014	Conductivity	µS/cm	908	700, 900 ⁽⁴⁾	Narrative	Active
TCHWY	8/19/2014	Conductivity	µS/cm	1188	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	11/19/2013	Conductivity	µS/cm	1134	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	12/10/2013	Conductivity	µS/cm	1071	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	1/14/2014	Conductivity	µS/cm	1105	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	3/18/2014	Conductivity	µS/cm	1131	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	4/15/2014	Conductivity	µS/cm	1246	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	5/20/2014	Conductivity	µS/cm	719	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	6/17/2014	Conductivity	µS/cm	706	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	7/15/2014	Conductivity	µS/cm	724	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	8/19/2014	Conductivity	µS/cm	1084	700, 900 ⁽⁴⁾	Narrative	Active
UCBRD	9/16/2014	Conductivity	µS/cm	889	700, 900 ⁽⁴⁾	Narrative	Active
WLKCH	1/15/2014	Conductivity	µS/cm	901	700, 900 ⁽⁴⁾	Narrative	Active
WLKCH	8/20/2014	Conductivity	µS/cm	796	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	11/21/2013	Conductivity	µS/cm	1566	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	12/10/2013	Conductivity	µS/cm	1018	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	1/14/2014	Conductivity	μS/cm	1084	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	2/11/2014	Conductivity	µS/cm	857	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	3/18/2014	Conductivity	μS/cm	1099	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	4/17/2014	Conductivity	μS/cm	1122	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	5/21/2014	Conductivity	μS/cm	1504	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	6/18/2014	Conductivity	μS/cm	1429	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	7/15/2014	Conductivity	µS/cm	1459	700, 900 ⁽⁴⁾	Narrative	Active

Site ID	Sample Date	Analyte	Units	Result	Trigger Limit ⁽¹⁾	Basis for Limit ⁽²⁾	Mgt Plan ⁽³
WLSPL	8/19/2014	Conductivity	µS/cm	1628	700, 900 ⁽⁴⁾	Narrative	Active
WLSPL	9/16/2014	Conductivity	µS/cm	1638	700, 900 ⁽⁴⁾	Narrative	Active
ZDDIX	4/15/2014	Conductivity	µS/cm	1116	700, 900 ⁽⁴⁾	Narrative	Active
ZDDIX	6/17/2014	Conductivity	µS/cm	724	700, 900 ⁽⁴⁾	Narrative	Active
CCBRW	5/20/2014	Copper, Dissolved	µg/L	15	4.95, 6.99	CTR ⁽⁷⁾	No
CCBRW	5/20/2014	Copper, Dissolved ⁽⁶⁾	µg/L	10	4.95, 6.99	CTR ⁽⁷⁾	No
LHNCT	5/20/2014	Copper, Dissolved	µg/L	9.5	5.79, 8.31	CTR ⁽⁷⁾	No
ACACR	41654	Dissolved Oxygen	mg/L	6.51	7	BP [SSO COLD]	Active
ACACR	41899	Dissolved Oxygen	mg/L	6	7	BP [SSO COLD]	Active
CCBRW	41746	Dissolved Oxygen	mg/L	6.53	7	BP [SSO COLD]	Active
CCCPY	41808	Dissolved Oxygen	mg/L	4.28	7	BP [SSO COLD]	Active
CCCPY	41872	Dissolved Oxygen	mg/L	6.43	7	BP [SSO COLD]	Active
CCSTR	41898	Dissolved Oxygen	mg/L	5.62	7	BP [SSO COLD]	Active
COLDR	41807	Dissolved Oxygen	mg/L	4.71	7	BP [SSO COLD]	Active
COLDR	41835	Dissolved Oxygen	mg/L	3.7	7	BP [SSO COLD]	Active
COLDR	41835	Dissolved Oxygen ⁽⁶⁾	mg/L	5.39	7	BP [SSO COLD]	Active
COLDR	41870	Dissolved Oxygen	mg/L	4.57	7	BP [SSO COLD]	Active
COLDR	41870	Dissolved Oxygen ⁽⁶⁾	mg/L	4.48	7	BP [SSO COLD]	Active
COLDR	41898	Dissolved Oxygen	mg/L	5.59	7	BP [SSO COLD]	Active
COLDR	41898	Dissolved Oxygen ⁽⁶⁾	mg/L	5.59	7	BP [SSO COLD]	Active
COYTR	41745	Dissolved Oxygen	mg/L	3.51	7	BP [SSO COLD]	Active
COYTR	41808	Dissolved Oxygen	mg/L	0.78	7	BP [SSO COLD]	Active
COYTR	41871	Dissolved Oxygen	mg/L	1.19	7	BP [SSO COLD]	Active
GIDLR	41680	Dissolved Oxygen	mg/L	4.69	5	BP [SSO WARM]	Active
GIDLR	41807	Dissolved Oxygen	mg/L	4.48	5	BP [SSO WARM]	Active
GIDLR	41835	Dissolved Oxygen	mg/L	3.56	5	BP [SSO WARM]	Active
GIDLR	41870	Dissolved Oxygen	mg/L	2.87	5	BP [SSO WARM]	Active
GIDLR	41898	Dissolved Oxygen	mg/L	3.25	5	BP [SSO WARM]	Active
GILSL	41779	Dissolved Oxygen	mg/L	4.71	5	BP [SSO WARM]	Active
GILSL	41835	Dissolved Oxygen	mg/L	4.12	5	BP [SSO WARM]	Active
LAGAM	41576	Dissolved Oxygen	mg/L	6.81	7	BP [SSO COLD]	Active
LAGAM	41744	Dissolved Oxygen	mg/L	5.01	7	BP [SSO COLD]	Active
LAGAM	41807	Dissolved Oxygen	mg/L	0.96	7	BP [SSO COLD]	Active
LAGAM	41870	Dissolved Oxygen	mg/L	1.78	7	BP [SSO COLD]	Active
LHNCT	41836	Dissolved Oxygen	mg/L	4.13	7	BP [SSO COLD]	Active
LHNCT	41871	Dissolved Oxygen	mg/L	5.05	7	BP [SSO COLD]	Active
LHNCT	41899	Dissolved Oxygen	mg/L	3.87	7	BP [SSO COLD]	Active
LSNKR	41836	Dissolved Oxygen	mg/L	4.9	5	BP [SSO WARM]	Active
MDLCR	41780	Dissolved Oxygen	mg/L	6.41	7	BP [SSO COLD]	No
MDLCR	41836	Dissolved Oxygen	mg/L	2.59	7	BP [SSO COLD]	Active
MDLCR	41872	Dissolved Oxygen	mg/L	4.35	7	BP [SSO COLD]	Active
MDLCR	41898	Dissolved Oxygen	mg/L	3.02	7	BP [SSO COLD]	No

Site ID	Sample Date	Analyte	Units	Result	Trigger Limit ⁽¹⁾	Basis for Limit ⁽²⁾	Mgt Plan ⁽³⁾
PNCGR	41598	Dissolved Oxygen	mg/L	2.83	7	BP [SSO COLD]	Active
PNCGR	41620	Dissolved Oxygen	mg/L	4.75	7	BP [SSO COLD]	Active
PNCGR	41654	Dissolved Oxygen	mg/L	4.9	7	BP [SSO COLD]	Active
PRCAN	41898	Dissolved Oxygen	mg/L	6.31	7	BP [SSO COLD]	Active
PRPIT	41809	Dissolved Oxygen	mg/L	6.92	7	BP [SSO COLD]	Active
RARPP	41835	Dissolved Oxygen	mg/L	4.12	5	BP [SSO WARM]	Active
RARPP	41871	Dissolved Oxygen	mg/L	4.54	5	BP [SSO WARM]	Active
RARPP	41898	Dissolved Oxygen	mg/L	4.4	5	BP [SSO WARM]	Active
SSKNK	41835	Dissolved Oxygen	mg/L	4.8	5	BP [SSO WARM]	Active
SSKNK	41835	Dissolved Oxygen ⁽⁶⁾	mg/L	4.58	5	BP [SSO WARM]	Active
SSKNK	41870	Dissolved Oxygen	mg/L	5.53	5	BP [SSO WARM]	Active
SSKNK	41870	Dissolved Oxygen ⁽⁶⁾	mg/L	5.56	5	BP [SSO WARM]	Active
TCHWY	41745	Dissolved Oxygen	mg/L	4.07	7	BP [SSO COLD]	No
UCBRD	41835	Dissolved Oxygen	mg/L	3.18	5	BP [SSO WARM]	Active
UCBRD	41870	Dissolved Oxygen	mg/L	1.85	5	BP [SSO WARM]	Active
UCBRD	41898	Dissolved Oxygen	mg/L	1.77	5	BP [SSO WARM]	Active
WLKCH	41780	Dissolved Oxygen	mg/L	2.26	5	BP [SSO WARM]	Active
WLKCH	41808	Dissolved Oxygen	mg/L	4.57	5	BP [SSO WARM]	Active
WLKCH	41837	Dissolved Oxygen	mg/L	4	5	BP [SSO WARM]	Active
WLSPL	41780	Dissolved Oxygen	mg/L	6.15	7	BP [SSO COLD]	Active
WLSPL	41898	Dissolved Oxygen	mg/L	5.14	7	BP [SSO COLD]	Active
ACACR	11/20/2013	E. coli	MPN/100mL	1732.9	235	BP	Suspende
ACACR	1/13/2014	E. coli	MPN/100mL	325.5	235	BP	Suspende
ACACR	5/20/2014	E. coli	MPN/100mL	547.5	235	BP	Suspende
ACACR	5/21/2014	E. coli	MPN/100mL	686.7	235	BP	Suspende
ACACR	8/20/2014	E. coli	MPN/100mL	1413.6	235	BP	Suspende
ACACR	9/17/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
CCBRW	2/10/2014	E. coli	MPN/100mL	2419.6	235	BP	Completed
CCBRW	9/16/2014	E. coli	MPN/100mL	325.5	235	BP	Completed
CRTWN	2/10/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
FRSHC	1/13/2014	E. coli	MPN/100mL	238.2	235	BP	Suspende
GIDLR	2/10/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
LHNCT	2/10/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
LSNKR	2/10/2014	E. coli	MPN/100mL	238.2	235	BP	Suspende
LSNKR	5/20/2014	E. coli	MPN/100mL	261.3	235	BP	Suspende
LSNKR	5/20/2014	E. coli	MPN/100mL	613.1	235	BP	Suspende
LSNKR	7/16/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
MDLCR	5/20/2014	E. coli	MPN/100mL	1732.9	235	BP	Suspende
PNCGR	11/20/2013	E. coli	MPN/100mL	290.9	235	BP	Suspende
PNCGR	12/12/2013	E. coli	MPN/100mL	2419.6	235	BP	Suspende
PNCHY	2/11/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspende
PNCHY	5/21/2014	E. coli	MPN/100mL	387.3	235	BP	Suspende

Site ID	Sample Date	Analyte	Units	Result	Trigger Limit ⁽¹⁾	Basis for Limit ⁽²⁾	Mgt Plan ⁽³⁾
PNCHY	7/17/2014	E. coli	MPN/100mL	238.2	235	BP	Suspended
PNCHY	8/20/2014	E. coli	MPN/100mL	727	235	BP	Suspended
PRPIT	7/22/2014	E. coli	MPN/100mL	866	235	BP	Suspended
SSLIB	2/10/2014	E. coli	MPN/100mL	1413.6	235	BP	Suspended
UCBRD	2/10/2014	E. coli	MPN/100mL	770.1	235	BP	Suspended
UCBRD	4/15/2014	E. coli	MPN/100mL	307.6	235	BP	Suspended
UCBRD	4/15/2014	E. coli ⁽⁶⁾	MPN/100mL	307.6	235	BP	Suspended
UCBRD	7/15/2014	E. coli	MPN/100mL	920.8	235	BP	Suspended
UCBRD	8/19/2014	E. coli	MPN/100mL	816.4	235	BP	Suspended
UCBRD	9/16/2014	E. coli	MPN/100mL	387.3	235	BP	Suspended
WLKCH	3/19/2014	E. coli	MPN/100mL	307.6	235	BP	Suspended
WLKCH	4/16/2014	E. coli	MPN/100mL	1203.3	235	BP	Suspended
WLKCH	5/21/2014	E. coli	MPN/100mL	648.8	235	BP	Suspended
WLKCH	5/21/2014	E. coli ⁽⁶⁾	MPN/100mL	1119.9	235	BP	Suspended
WLSPL	4/17/2014	E. coli	MPN/100mL	261.3	235	BP	Suspended
WLSPL	5/20/2014	E. coli	MPN/100mL	2419.6	235	BP	Suspended
GIDLR	2/10/2014	Nitrate+Nitrite, as N	mg/L	16	10	1° MCL ⁽⁵⁾	No
UCBRD	1/14/2014	Nitrate+Nitrite, as N	mg/L	12	10	1° MCL ⁽⁵⁾	Completed
COYTR	4/16/2014	рН	std. units	5.92	6.5-8.5	BP	No
GIDLR	5/20/2014	pН	std. units	6.48	6.5-8.5	BP	No
GILSL	9/17/2014	рН	-log[H+]	9.71	6.5-8.5	BP	Active
MDLCR	5/21/2014	рН	std. units	6.12	6.5-8.5	BP	No
PRCAN	9/16/2014	pН	std. units	8.79	6.5-8.5	BP	No
WLKCH	8/20/2014	рН	std. units	8.53	6.5-8.5	BP	No
WLSPL	9/16/2014	pН	-log[H+]	8.87	6.5-8.5	BP	Active
WLSPL	3/18/2014	Selenium	µg/L	5.3	5	CTR	Active

Notes:

1. Water Quality Objective or Narrative Interpretation Limits for ILRP.

2. Water Quality Objective Basis: BP = Central Valley Basin Plan; BPA = Basin Plan Amendment;

CTR = California Toxics Rule; Narrative = unadopted limits used to interpret Basin Plan narrative objectives by the Central Valley Regional Board.

3. Indicates whether sites and parameter are currently being addressed by an ongoing management plan, study, or TMDL

Conductivity exceeded the unadopted UN Agricultural Goal (700 μS/cm) and/or the California recommended 2° MCL (900 μS/cm) for drinking water.

5. California 1° MCL (10 mg/L as N) for drinking water.

6. Field duplicate

7. CTR Freshwater Chronic and Acute

## **Trend Analysis**

As part of the evaluation of monitoring results, the WDR requires the Coalition to conduct trend analyses to...

"... identify potential trends^[24] and patterns in surface and groundwater quality that may be associated with waste discharge from irrigated lands. As part of this evaluation, the third-party must analyze all readily available monitoring data that meet program quality assurance requirements to determine deficiencies in monitoring for discharges from irrigated agricultural lands and whether additional sampling locations or sampling events are needed or if additional constituents should be monitored. If deficiencies are identified, the third-party must propose a schedule for additional monitoring or source studies. ... The third-party should incorporate pesticide use information, as needed, to assist in its data evaluation."

To address this requirement, trend analysis was conducted as described below.

The data analyzed consisted of:

- Representative monitoring sites in 2014
- Parameters monitored for the 2014 monitoring year, including all pesticides with  $\geq 5\%$  detection^[25], based on the combined data for all representative sites
  - Chlorpyrifos
  - o Diazinon
  - o Diuron
  - Hexazinone
  - Metolachlor
  - o Simazine
  - o Trifluralin
- All Coalition ILRP sample events from 2005 through September 2014

The methods used to analyze and evaluate the data were as follows:

- Data were initially evaluated using Spearman's non-parametric test for trend (concentrations vs. sample date). Table of the initial Spearman's test results are provided in **Appendix G**.
  - Data below detection were coded as "0" for initial non-parametric Spearman's evaluation
  - o Data were analyzed separately for each site for all parameters

²⁴ "All results (regardless of whether exceedances are observed) must be included to determine whether there are trends in degradation that may threaten applicable beneficial uses."

²⁵ Pesticides with lower than 5% detection rates were considered to have insufficient detected data to reliably identify trends.

- Pesticide results were also analyzed for all sites combined to evaluate broader regional trends
- $\circ$   $\,$  The threshold for statistical significance was set at p<0.05  $\,$
- Significant preliminary results (p<0.05) were screened for potential degradation impacts
  - o Increasing trends in pesticides, metals, nutrients, pathogen indicators
  - Increasing trends in pH, conductivity, temperature
  - Decreasing trends in dissolved oxygen
  - Decreasing trends in toxicity survival or growth results
  - The subset of the initial Spearman's test results with potential degradation impacts are provided in **Appendix G**.
- Parameters with potential degradation trend indicators were plotted (concentration vs. date) for further evaluation (plots are provided in **Appendix G**.)
  - Data below detection were plotted at the detection limit
  - Plots were reviewed for potential detection limit artifacts, and replotted without high detection limit non-detect data for a few parameters
  - Reviewed for potential outliers
  - Linear, log-linear, or robust trend lines were plotted to illustrate trends (the selected method was based on visual inspection and best professional judgment)
  - Plots were evaluated for other (non-trend) patterns

A determination of the significance of a potential degradation trend was based on the likelihood of a continuing trend and the likelihood of adverse impacts on beneficial uses. Evaluations of beneficial use impacts were based on a continued increasing probability of exceedances of trigger limits. These determinations are provided in **Appendix G**, and significant findings are discussed below.

Pesticide use data are evaluated during the process of developing the annual monitoring plan update, as required by the WDR, and no additional evaluations of pesticide use data were conducted for this Annual Report.. The results of pesticide evaluations conducted in 2013 and 2014 were incorporated into the 2014 and 2015 monitoring plans that were approved by the Regional Water Board. Pesticide use information will next be evaluated in 2017 for the 2018 assessment monitoring period using the method being developed by the Regional Water Board and ILRP stakeholders, and approved for this use by the Regional Water Board.

#### DISCUSSION OF RESULTS

The Coalition's 2015 monitoring plan update was approved by Regional Water Board staff as meeting the requirements of the WDR. The WDR provides no additional guidance or criteria for making a determination that there are "deficiencies in monitoring" or that additional locations or events are needed, and none were identified as a result of the trend analysis conducted for this report.

#### Summary of initial Spearman's test results

- 624 site-parameter combinations were evaluated
- 443 results were not significant ( $p \ge 0.05$ )
- 73 results were not significant due to insufficient detected data
- 107 results were initially determined to have potentially significant trends (p<0.05)
  - 61 significant results were identified for trends with no potential negative impacts (i.e., they indicated potentially improving water quality)
  - 46 initially significant results were identified as suggesting degradation with potential negative impacts on beneficial uses and were further evaluated
- Of the 46 significant results suggesting potential degradation, 15 results were dismissed on the basis of insufficient data, or insufficient detected results to establish a trend, or were found not to represent actual trends after additional evaluation of the plots.
- 31 results (~5% of the beginning number of evaluations) were determined to have significant increasing or decreasing trends suggesting potential degradation (Table 25) and were evaluated further.

Category	Analyte	Site Name			
Physical	Conductivity	Anderson Creek at Ash Creek Road			
		Colusa Basin Drain above KL			
		Freshwater Creek at Gibson Rd			
		Lower Snake R. at Nuestro Rd			
		Middle Creek u/s from Highway 20			
		North Canyon Creek			
		Pine Creek at Nord Gianella Road			
		Pit River at Pittville			
		Sacramento Slough bridge near Karnak			
		Ulatis Creek at Brown Road			
		Walker Creek near 99W and CR33			
		Willow Slough Bypass at Pole Line			
	Dissolved Oxygen	Coon Creek at Brewer Road			
		Lower Snake R. at Nuestro Rd			
		Middle Creek u/s from Highway 20			
		Middle Fork Feather River above Grizzly Cr			
		Pine Creek at Highway 32			
		Pine Creek at Nord Gianella Road			
		Ulatis Creek at Brown Road			
	рН	Colusa Basin Drain above KL			
		Lower Snake R. at Nuestro Rd			
		Pope Creek upstream from Lake Berryessa			
	Temperature	Middle Creek u/s from Highway 20			
	Total Organic Carbon	Pine Creek at Nord Gianella Road			
		Walker Creek near 99W and CR33			
	Total Suspended Solids	Grand Island Drain near Leary Road			
Nutrients	Ammonia, Total as N	Pine Creek at Nord Gianella Road			
	Nitrate+Nitrite, as N	Freshwater Creek at Gibson Rd			
	Orthophosphate, as P	Lower Honcut Creek at Hwy 70			
		Pine Creek at Nord Gianella Road			
Toxicity	Selenastrum growth	Anderson Creek at Ash Creek Road			

Most of the significant trends indicating potential degradation (26 of 31) were for physical parameters (conductivity, dissolved oxygen, pH, temperature, total organic carbon, totals suspended solids). Higher conductivity and pH, and lower dissolved oxygen generally corresponded to the recent periods of low water years with generally lower instream flows and elevated temperatures. These patterns reflect shorter term climatic variations that are not controllable by agricultural practices, and do not indicate trends of long term degradation due to

agricultural discharges. This pattern can be expected to continue in the near term based on continuing drought conditions, and increased agricultural water use conservation, but will likely reverse when water supplies and instream flows increase. The longer term resolution of this potential trend is adequately monitored by the current monitoring regime of approximately monthly sampling. Plots illustrating these relationships are included in **Appendix G**.

Four cases of significant increasing trends in nutrient concentrations were observed:

Dissolved orthophosphate exhibited a significant increasing trend in samples from Lower Honcut Creek (**Figure 4-a**). The trend appeared to be due primarily to elevated concentrations observed in the 2014 monitoring year. These concentrations decreased throughout the 2014, approaching the baseline concentrations observed previously, and did not appear to indicate a continuing long-term trend. There is no specific trigger limit or water quality objective associated with orthophosphate, and the observed concentrations and short term trends did not suggest a need for additional monitoring events or locations.

Dissolved orthophosphate and ammonia exhibited significant increasing trends in samples from Pine Creek (**Figures 4 b-c**). Concentrations were elevated in 2011 and 2014 monitoring years. There is no specific trigger limit or water quality objective associated with orthophosphate, and the observed concentrations and short term trends did not suggest a need for additional monitoring events or locations. This Pine Creek site is no longer used as a representative site due to unreliable flows that resulted in sampling from isolated pools, or many events with no water to sample and was replaced by a downstream site in February of 2014. The new site (Pine Creek at Highway 32) will provide a better long-term picture of trends in nutrient concentrations.

Nitrate+nitrite concentrations were elevated above the average for the site in 2011 and 2013 in Freshwater Creek samples (**Figure 4-d**). This resulted in a statistically significant increasing trend, but concentrations returned to more typical levels in 2014 samples. None of the samples exceeded the Trigger Limit for nitrate as N (10 mg/L), and the return to lower concentrations indicated that this did not represent a longer-term trend of degradation. Tracking this potential trend is adequately addressed with ongoing approved ILRP assessment monitoring.

A significant decreasing trend in *Selenastrum* growth was observed for Andersen Creek (**Figure 4-e**) in the Shasta-Tehama subwatershed. However, there were no exceedances and none of the samples for this site exhibited any toxicity or reduction in *Selenastrum* growth below lab controls for the tests. No trend was observed between the 2011 and 2014 assessment monitoring years, and the trend appeared to be driven primarily by elevated growth in samples collected in 2006. No degradation or additional sampling needs were indicated, and there were no other significant decreasing trends in other toxicity results.

No pesticides or trace metals exhibited significant increasing trends suggesting degradation or need for additional monitoring.

In summary, the results of trend analyses conducted for this AMR did not indicate a need for any additional locations, events, or parameters. We recommend that these evaluations are conducted no more often than once per assessment period.

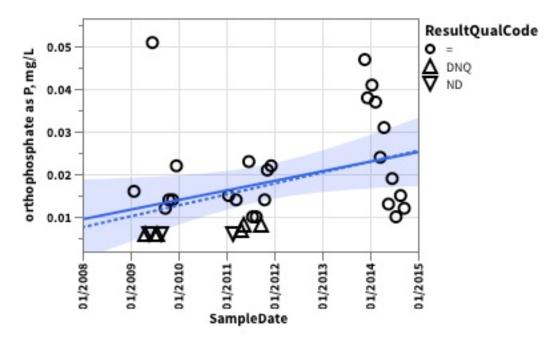



Figure 4-a. Dissolved Orthophosphate as P, Lower Honcut Creek



Figure 4-b. Dissolved Orthophosphate as P, Pine Creek at Nord-Gianella Road

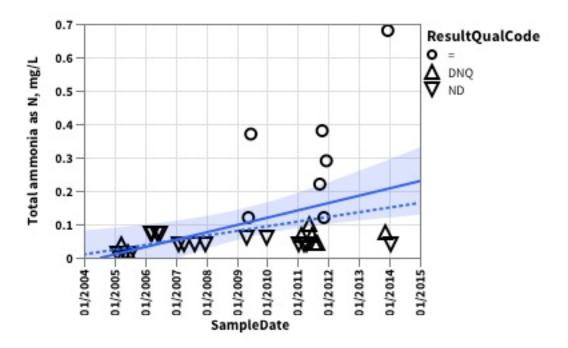



Figure 4-c. Total Ammonia as N, Pine Creek at Nord-Gianella Road

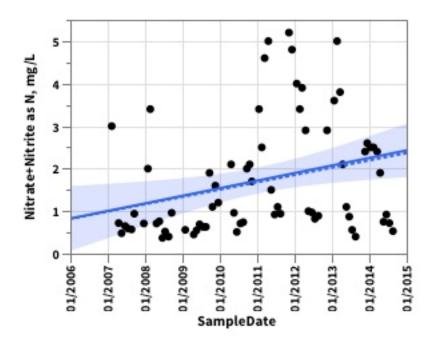



Figure 4-d. Nitrate+Nitrite as N, Freshwater Creek at Gibson Rd

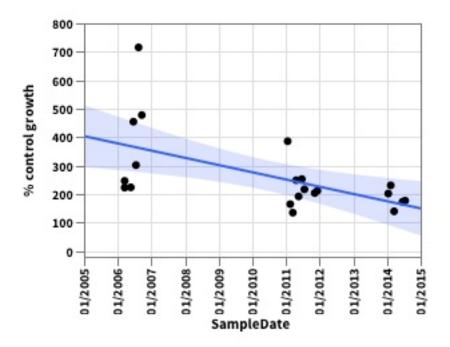



Figure 4-e. Selenastrum Toxicity, Andersen Creek

### **Management Practices and Actions Taken**

#### **RESPONSE TO EXCEEDANCES**

To address specific water quality exceedances, the Coalition and its partners developed a Management Plan in 2008, subsequently approved by the Water Board. The Coalition also previously developed a *Landowner Outreach and Management Practices Implementation Communications Process for Monitoring Results (Management Practices Process)* to address exceedances. Implementation of the approved management plan is the primary mechanism for addressing exceedances observed in the Coalition's *ILRP* monitoring.

#### Management Plan Status Update

The Coalition submitted the most recent Management Plan Progress Report (MPPR) to the Water Board in April 2014. The Management Plan Progress Report (MPPR) documenting the status and progress toward Management Plan requirements for 2014 is provided to the Water Board with this Annual Monitoring Report. Activities conducted in 2014 to implement the Coalition's Management Plan included addressing exceedances of objectives for registered pesticides, completion of source evaluations for pesticides and toxicity, development of management practice implementation goals, and monitoring required for toxicity and pesticide management plans and TMDLs.

Implementation completed specifically for registered pesticides and toxicity included review and evaluation of pesticide application data, identification of potential sources, and determination of likely agricultural sources. These evaluations were documented in Source Evaluation Reports for each water body and management plan element. For registered pesticides and identified causes of toxicity, surveys of Coalition members operating on high priority parcels were conducted to determine the degree of implementation of relevant management practices. These survey results have been used to establish goals for additional management practice implementation needed to address exceedances of Basin Plan water quality objectives and *ILRP* Trigger Limits.

#### LANDOWNER OUTREACH EFFORTS

The Coalition and its subwatersheds, working with the Coalition for Urban/Rural Environmental Stewardship (CURES), stand committed to working with the Water Board and its staff to implement the *Management Practices Process* and the Coalition's approved Management Plan to address water quality problems identified in the Sacramento Valley. The primary strategic approach taken by the Coalition is to notify and educate the subwatershed landowners, farm operators, and/or wetland managers about the cause(s) of toxicity and/or exceedance(s) of water quality standards. Notifications are focused on (but not limited to) growers who operate directly adjacent to or within close proximity to the waterway. The broader outreach program, which includes both grower meetings and the notifications distributed through direct mailings, encourages the adoption of BMPs and modification of the uses of specific farm and wetland inputs to prevent movement of constituents of concern into Sacramento Valley surface waters.

#### **Targeted Outreach Efforts**

The Coalition's targeted outreach approach is to focus on the growers with fields directly adjacent to or near the actual waterway of concern. To identify those landowners operating in high priority lands, the Coalition identifies the assessor parcels and subsequently the owners of agricultural operations nearest the water bodies of interest. From the list of assessor parcel numbers, the Coalition identifies its members and mails to them an advisory notice along with information on how to address the specific exceedances using BMPs. This same approach has been used to conduct management practice surveys in areas targeted by the Management Plan.

#### **General Outreach Efforts**

Highlights of outreach efforts conducted by the Coalition and its partners for specific subwatersheds during the monitoring period are summarized in an Excel table for each watershed in **Appendix F**.²⁶ Available outreach materials are also included as attachments in **Appendix F**.

²⁶ Outreach information for the Lake Subwatershed was not available as of April 30, 2015. This information will be submitted as soon as possible.

## **Summary of Farm Evaluation Data**

In 2014, Farm Evaluations documenting implemented management practices were required from every Coalition member for the new WDR. These Farm Evaluations are still in the process of being compiled and analyzed and will be reported to Regional Water Board as an addendum to the Annual Monitoring Report by August 1, 2015, as approved by the Regional Water Board in *Extension to Submit the Annual Monitoring Report Component 20 – Summary of Management Practice Information, April 21, 2015.* 

## **Conclusions and Recommendations**

The Coalition submits this 2014 Annual Monitoring Report (AMR) as required under the Water Board's Irrigated Lands Regulatory Program (*ILRP*). The AMR provides a detailed description of our monitoring results as part of our ongoing efforts to characterize irrigated agricultural and wetlands related water quality in the Sacramento River Basin.

To summarize, the results from the *ILRP* monitoring in 2014 continue to indicate that with few exceptions, there are no major water quality problems with agricultural and managed wetlands discharges in the Sacramento River Basin.

This AMR characterizes potential water quality impacts of agricultural drainage from a broad geographic area in the Sacramento Valley from October 2013 through September 2014. To date, a total of 103 Coalition storm and irrigation season events have been completed, with additional events collected by coordinating programs and for follow-up evaluations. For the period of record in this AMR (October 2013 through September 2014), samples were collected for 10 scheduled monthly events and 2 wet weather ("storm") events.

Pesticides were infrequently detected (~1.8% of pesticide results for 2014), and, when detected, rarely exceeded applicable objectives. Two registered pesticides (chlorpyrifos and malathion) exceeded applicable water quality objectives or *ILRP* Trigger Limits in a total of five Coalition monitoring samples (including one field duplicate). In addition, breakdown products of the legacy pesticide DDT [DDD(p,p), DDE(p,p), and DDT(p,p)] were detected above applicable water quality objectives in a total of six samples from three sites.

Many of the pesticides specifically required to be monitored in the past by the *ILRP* have rarely been detected in Coalition water samples, including glyphosate, paraquat, and all of the pyrethroid pesticides. Over 98.3% of all pesticide analyses performed to date for the Coalition have been below detection. Coalition monitoring of pesticides for the *ILRP* for 2014 was conducted based on management plan requirements and on reported pesticide use and relative toxicity risks for pesticides in the subwatersheds. The Coalition also conducted focused monitoring of the *ILRP* required trace elements (arsenic, cadmium, lead, molybdenum, nickel, selenium, and zinc) informed by the Coalition's past monitoring results, which have demonstrated that most of these metals rarely approach or exceed objectives and are not likely to cause adverse impacts to aquatic life or human health in waters receiving agricultural runoff in the Coalition watershed. This focused strategy for monitoring pesticides and trace metals was implemented in 2010 in accordance with the Coalition's 2009 MRP (*Order No. R5-2009-0875*, CVRWQCB 2009), and this same strategy is consistent with the requirements of the new WDR and MRP (*Order No. R5-2014-0030*).

The majority of exceedances of adopted numeric objectives continue to consist of conductivity, dissolved oxygen, and *E. coli*. Agricultural runoff and irrigation return flows may contribute to exceedances of these objectives, but these parameters are primarily controlled or significantly affected by natural processes and sources that are not controllable by agricultural management practices.

The Coalition has implemented the required elements of the *ILRP* since 2004. The Coalition developed a Watershed Evaluation Report (WER) that set the priorities for development and implementation of the initial Monitoring and Reporting Program Plan (MRPP). The Coalition successfully developed the MRPP, QAPP, and Management Plan as required by the *ILRP*, and

these documents were approved by the Water Board. Subsequent revisions requested by the Water Board and the Coalition were incorporated into the Coalition's program and implemented through the Coalition's ongoing *ILRP* monitoring efforts. The Coalition also continues to adapt and improve elements of the monitoring program based on the knowledge gained through *ILRP* monitoring efforts.

The 2014 monitoring program was developed to be consistent with the anticipated requirements of the new WDR and MRP (*Order No. R5-2014-0030*) and was approved by the Regional Water Board for this purpose with the understanding that it would serve as the first "Assessment" monitoring for the new MRP. The Coalition has implemented the approved monitoring program in coordination with its subwatershed partners, has initiated follow-up activities required to address observed exceedances, and continues to implement the approved Management Plan. Throughout this process, the Coalition has kept an open line of communication with the Water Board and has made every effort to fulfill the requirements of the *ILRP* in a cost-effective, scientifically defensible, and management-focused manner. This AMR is documentation of the success and continued progress of the Coalition in achieving these objectives.

### References

- Amweg, E.L., D.P. Weston, and N.M. Ureda. 2005. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24:966-972.
- CVRWQCB 1995. The Water Quality Control Plan (Basin Plan) for the Central Valley Region, 4th Edition. California Regional Water Quality Control Board – Central Valley Region (CVRWQCB). Sacramento, California.
- CVRWQCB 2002. Amendment To The Water Quality Control Plan For The Sacramento River And San Joaquin River Basins For Bacteria. Staff Report And Functional Equivalent Document, *Draft, May 2002.* California Regional Water Quality Control Board – Central Valley Region (CVRWQCB). Sacramento, California.
- SVWQC 2010. Quality Assurance Project Plan (QAPP), Sacramento Valley Water Quality Coalition Monitoring and Reporting Program Plan – Sacramento River Basin. Prepared for the Sacramento Valley Water Quality Coalition by Larry Walker Associates, Davis, California.
- USEPA 1986. Quality Criteria for Water. EPA 440-5-86-001. U.S. Environmental Protection Agency (USEPA), Office of Water. Washington DC.
- USEPA 1999. National Recommended Water Quality Criteria—Correction. EPA 822-Z-99-001. U.S. Environmental Protection Agency (USEPA), Office of Water. Washington, DC.
- USEPA 2000. Final California Toxics Rule (CTR), Vol. 65, No. 97, Federal Register, §§31682 *et seq.*.
- USEPA 2002a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. Office of Water, Washington, D.C. EPA-821-R-02-012
- USEPA 2002b. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. U.S. Environmental Protection Agency (USEPA), Office of Water, Washington, D.C. EPA-821-R-02-01
- USEPA 2007. ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. U.S. Environmental Protection Agency. Available: http://www.epa.gov/ecotox/
- USEPA, *Quality Criteria for Water*, EPA 440/9-76-023. U.S. Environmental Protection Agency (USEPA), Office of Water. July, 1976 [*The Red Book*].

## Appendices

The following appendices are available in electronic form on the CD provided.

Appendix A: Field Log Copies

Appendix B: Lab Reports and Chains-of-Custody

Appendix C: Tabulated Monitoring Results

Appendix D: Exceedance Reports

Appendix E: Site-Specific Drainage Maps

Appendix F: SVWQC Outreach Materials

Appendix G: Trend Analysis Results