Monitoring Program for 2007:
Sacramento Valley Water Quality Coalition

In January 2005, the Sacramento Valley Water Quality Coalition commenced monitoring under its Monitoring and Reporting Program Plan (MRPP) and Quality Assurance Project Plan (QAPP) submitted to the Regional Water Quality Control Board, Central Valley Region (Regional Board) on April 1, 2004 and December 22, 2004 respectively. The Regional Board issued a Conditional Approval of the Coalition’s MRPP on December 2, 2004.

The following document is the Coalition monitoring plan for 2007 and is provided as an attachment to the Coalition’s amended MRRP. The monitoring plan for 2007 is a more aggressive approach to completing the monitoring requirements in the R5-2005-0833 MRP for monitoring intermediate drainages. This more aggressive approach is based on replacing previously monitored sites with high priority sites in intermediate size drainages, and conducting concurrent monitoring of Phase 1 and Phase 2 parameters at most new locations.

MONITORING IN 2006

Monitoring conducted in 2005 and 2006 under the Coalition’s MRPP provides the basis for the monitoring proposed for 2007. This monitoring is briefly summarized in the following sections, along with the basis for changes implemented for the 2006 storm and irrigation season monitoring.

Core Monitoring Sites

The Coalition collected samples and performed analyses at 24 primary sites throughout the watershed (Table 1). Consistent with the conditionally approved MRPP and QAPP, monitoring was generally conducted twice during the storm season (December – March), and monthly during the 2006 irrigation season (May – September).

Exceptions to the planned monitoring frequencies documented in the MRPP and QAPP in 2006 were as follows:

Burch Creek at Woodson Avenue Bridge:
This site was sampled for two storm events in 2006. This site was replaced with *Burch Creek West of Rawson Road* at the beginning of irrigation season. There was inadequate flow to sample this site in July, and the site was found to be dry for the remainder of the irrigation season.

Pine Creek at Nord-Gianella Road:
This site was sampled for two storm events and two irrigation events. There was inadequate flow to sample this site in July, and the site was found to be dry for the remainder of the irrigation season.

Cosumnes River at Twin Cites Road:
This site was sampled for two storm events and four irrigation events. There was inadequate flow to sample this site in September, and the site was found to be dry for the remainder of the irrigation season.
Table 1. SVWQC monitoring sites, 2005-2006

<table>
<thead>
<tr>
<th>Site Index</th>
<th>Subwatersheds</th>
<th>Site Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Butte/Yuba/Sutter</td>
<td>Butte Slough at Pass Road</td>
</tr>
<tr>
<td>13</td>
<td>Butte/Yuba/Sutter</td>
<td>Wadsworth Canal at South Butte Rd</td>
</tr>
<tr>
<td>14</td>
<td>Butte/Yuba/Sutter</td>
<td>Pine Creek at Nord Gianella Road</td>
</tr>
<tr>
<td>33</td>
<td>Butte/Yuba/Sutter</td>
<td>Gilsizer Slough at George Washington Rd</td>
</tr>
<tr>
<td>5</td>
<td>ColusaBasin</td>
<td>Stony Creek on Hwy 45 near Rd 24</td>
</tr>
<tr>
<td>6</td>
<td>ColusaBasin</td>
<td>Colusa Drain near Maxwell Rd</td>
</tr>
<tr>
<td>7</td>
<td>ColusaBasin</td>
<td>Stone Corral Creek near Maxwell Road</td>
</tr>
<tr>
<td>8</td>
<td>ColusaBasin</td>
<td>Rough and Ready Pumping Plant (RD 108)</td>
</tr>
<tr>
<td>10</td>
<td>ColusaBasin</td>
<td>Butte Creek at Gridley Rd Bridge</td>
</tr>
<tr>
<td>25</td>
<td>El Dorado</td>
<td>North Canyon Creek</td>
</tr>
<tr>
<td>22</td>
<td>Lake/Napa</td>
<td>McGaugh Slough at Finley Road East</td>
</tr>
<tr>
<td>11</td>
<td>Placer/Nevada/SSutter/NSacramento</td>
<td>Coon Creek at Striplin Road</td>
</tr>
<tr>
<td>26</td>
<td>Sacramento/Amador</td>
<td>Cosumnes River at Twin Cities Rd</td>
</tr>
<tr>
<td>27</td>
<td>Sacramento/Amador</td>
<td>Dry Creek at Alta Mesa Road</td>
</tr>
<tr>
<td>4</td>
<td>Shasta/Tehama</td>
<td>Burch Creek at Woodson Ave Bridge</td>
</tr>
<tr>
<td>30</td>
<td>Shasta/Tehama</td>
<td>Anderson Creek at Ash Creek Road</td>
</tr>
<tr>
<td>34</td>
<td>Shasta/Tehama</td>
<td>Burch Creek west of Rawson Rd</td>
</tr>
<tr>
<td>16</td>
<td>Solano/Yolo</td>
<td>Z Drain – Dixon RCD</td>
</tr>
<tr>
<td>18</td>
<td>Solano/Yolo</td>
<td>Tule Canal at I-80</td>
</tr>
<tr>
<td>29</td>
<td>Solano/Yolo</td>
<td>Shag Slough at Liberty Island Bridge</td>
</tr>
<tr>
<td>32</td>
<td>Solano/Yolo</td>
<td>Ulatis Creek at Brown Road</td>
</tr>
<tr>
<td>19</td>
<td>Upper Feather River</td>
<td>Spanish Creek above Greenhorn Creek</td>
</tr>
<tr>
<td>20</td>
<td>Upper Feather River</td>
<td>Middle Fork Feather River at County Rd A-23</td>
</tr>
<tr>
<td>21</td>
<td>Upper Feather River</td>
<td>Indian Creek d/s from Indian Valley</td>
</tr>
</tbody>
</table>

Coordinated Monitoring

The Coalition also coordinated efforts with five other programs collecting samples in priority drainage areas throughout the Sacramento Valley. Samples were collected at the sites listed in Table 2 at the frequencies specified.

Table 2. Coordinating program monitoring sites in 2006

<table>
<thead>
<tr>
<th>Subwatersheds</th>
<th>Site Location</th>
<th>Frequency</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit River</td>
<td>Pit River at Pittville</td>
<td>Monthly, April through September</td>
<td>Northeastern California Water Association (NECWA)</td>
</tr>
<tr>
<td></td>
<td>Fall River at Fall River Ranch Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit River at Canby Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake/Napa</td>
<td>Pope Creek upstream from Lake Berryessa</td>
<td>Three events (2 Storm, 1 Irrigation)</td>
<td>Putah Creek Watershed Group</td>
</tr>
<tr>
<td></td>
<td>Capell Creek upstream from Lake Berryessa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colusa Basin</td>
<td>Colusa Basin Drain above KL</td>
<td>Monthly beginning irrigation season 2006</td>
<td>Sacramento River Watershed Program</td>
</tr>
<tr>
<td>Butte/Yuba/Sutter</td>
<td>Sacramento Slough</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LONG-TERM MONITORING STRATEGY

The Coalition’s overall monitoring strategy as outlined in the Coalition’s MRPP has been to select monitoring sites that represent the maximum percentage of high priority irrigated acreage. This strategy has resulted in rapid characterization of a large percentage of the overall irrigated acreage in the Coalition’s watershed. The R5-2005-0833 MRP includes a requirement for monitoring “20% additional intermediate drainages per year”, although the R5-2005-0833 MRP does not provide a definition of an intermediate drainage, or any guidance for classifying drainages by size. It was considered that implementing the Coalition’s strategy would satisfy the intent of the 20% requirement, but how this would be accomplished was not explicitly addressed in the Coalition’s initial MRPP. Consequently, Regional Board staff requested a list of Coalition drainages and classifications, and a long term strategy to meet the 20% requirement in the R5-2005-0833 MRP. A complete list of drainages without classifications has been provided previously to the Regional Board in response to this request. The Coalition’s long term monitoring strategy is proposed herein. This monitoring plan for 2007 presents the Coalition’s drainage classification method, provides the classifications for each drainage, and evaluates the progress toward the R5-2005-0833 MRP monitoring requirement.

Long-Term Strategy Overview

The Coalition’s long term monitoring strategy is designed to achieve overall characterization of high and medium priority drainages in 5 years. The Coalition’s strategy also somewhat anticipates changes in monitoring requirements in the revised MRP that will be released by the Regional Board late in 2006. These changes are expected to include an end to the phased monitoring approach of the current MRP, and replacement of the poorly defined requirement for 20% additional intermediate drainages per year with a more general requirement for a long term monitoring strategy to characterize agricultural drainages. Revisions to the Regional Board MRP are also expected to include numerous technical changes in monitoring requirements.

The elements that are key to achieving the Coalition’s goal and satisfying the intent of the requirements of the R5-2005-0833 MRP are the Coalition’s prioritization process for selecting drainages and monitoring sites, and an efficient strategy for implementing monitoring in intermediate drainages. The overall strategy for efficiently completing the required monitoring is to focus selectively on unmonitored intermediate drainages that are rated high or medium priority based on their irrigated acreage, cropping patterns, pesticide use, and their potential for contributing to cumulative impacts on receiving waters. Generally, this will be achieved by replacing sites with completed monitoring with new sites in intermediate drainages. Additionally, the Coalition will continue to monitor several integrator sites that characterize multiple smaller drainages and provide an assessment of the overall or cumulative quality of irrigated agriculture runoff. Examples of these integrator sites are Colusa Basin Drain near Knights Landing, and Shag Slough at Liberty Island Bridge.

The other aspect of efficiently completing the required monitoring is to concurrently analyze all parameters required for Phase 1 and Phase 2 of the current R5-2005-0833 MRP. This allows drainages to be characterized in a single year instead in the two years of requiring under the phased approach. All new sites will include the full suite of
parameters required for the MRP, as appropriate for cropping and pesticide use patterns in each drainage. For continuing sites, a reduced set of parameters may be monitored based on previous monitoring results, with the goal of completing the Phase 2 monitoring for these sites in 2007. In cases where continued monitoring is required to evaluate effectiveness of management plans, the frequency and locations of monitoring will be established in the specific management plan and will be focused on the parameters of concern.

Updated Prioritization Method

The Coalition’s initial method for prioritizing monitoring sites is described in the Coalition’s MRPP. This method prioritized drainages within each subwatershed based on total irrigated acres, crop types, and pesticide use. These initial subwatershed priorities were re-evaluated for 2007 and were adjusted based on the potential for cumulative agricultural impacts downstream from each drainage. This was accomplished by calculating the cumulative percent of irrigated acreage in waters directly downstream from each drainage, and assigning a category of Low, Medium, or High based on equal percentiles in each category. The Coalition’s initial subwatershed-based priorities (also Low, Medium, or High) were elevated if the potential for cumulative agricultural impacts downstream of the drainage was higher than the initial subwatershed priority, or reduced if it was lower than the subwatershed priority. As a consequence of this reevaluation, 41 drainages were elevated from Low to Medium priority, and 16 drainages were elevated from Medium to High priority. Priorities were not reduced for any Medium or High priority drainages. Drainages with less than 640 irrigated acres and previously classified as Low priority were considered not critical to adequately characterize irrigated agricultural lands and were excluded from further classification. Final monitoring priority adjustments are summarized in Table 3.

<table>
<thead>
<tr>
<th>Cumulative % Irrigated Acres Downstream of Drainage</th>
<th>Initial Subwatershed Drainage Priority</th>
<th>Irrigated acres <640</th>
<th>Low</th>
<th>Med</th>
<th>High</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (0 - 33.3 percentile)</td>
<td>Excluded</td>
<td>Low</td>
<td>Low</td>
<td>Med</td>
<td>Med</td>
<td>n = 79</td>
</tr>
<tr>
<td><0.4% Irrigated Acres</td>
<td>n = 79</td>
<td>n = 0</td>
<td>n = 0</td>
<td>n = 0</td>
<td>n = 0</td>
<td>n = 79</td>
</tr>
<tr>
<td>Medium (33.4 - 66.6 percentile)</td>
<td>Excluded</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>High</td>
<td>n = 80</td>
</tr>
<tr>
<td>0.4 - 12.15% Irrigated Acres</td>
<td>n = 23</td>
<td>n = 47</td>
<td>n = 10</td>
<td>n = 0</td>
<td>n = 0</td>
<td>n = 80</td>
</tr>
<tr>
<td>High (66.7 - 100 percentile)</td>
<td>Excluded</td>
<td>Med</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>n = 78</td>
</tr>
<tr>
<td>>12.15% Irrigated Acres</td>
<td>n = 1</td>
<td>n = 41</td>
<td>n = 16</td>
<td>n = 20</td>
<td>n = 20</td>
<td>n = 78</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>103</td>
<td>88</td>
<td>26</td>
<td>20</td>
<td>237</td>
</tr>
</tbody>
</table>
Classification of Drainages

To evaluate progress toward the R5-2005-0833 MRP requirements for monitoring intermediate drainages, all individual drainages with greater than 640 irrigated acres were classified as Large, Intermediate, and Small. Drainages with less than 640 irrigated acres were excluded from this drainage size classification, as described above. The size classification of the remaining drainages was based on a simple percentile breakdown of the total acreage in each individual drainage: 20% Large drainages, 50% Intermediate drainages, and 30% Small drainages. The limits for each drainage size category are provided in Table 4. Tables of excluded drainages and classified drainages are provided in Appendix A.

Table 4. Drainage size category definitions.

<table>
<thead>
<tr>
<th>DRAINAGE SIZE CATEGORY</th>
<th>1 (SMALL)</th>
<th>2 (INT)</th>
<th>3 (LARGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Size, Acres</td>
<td>3,150</td>
<td>29,690</td>
<td>131,824</td>
</tr>
<tr>
<td>Maximum Size, Acres</td>
<td>29,072</td>
<td>131,356</td>
<td>1,186,577</td>
</tr>
<tr>
<td>Percent of all drainages w/ >640 irrigated acres</td>
<td>30%</td>
<td>50%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Evaluation of Progress Toward Completion of Monitoring Requirements

The Coalition’s current progress toward meeting the monitoring requirements of the R5-2005-0833 MRP was evaluated based on the percentage of drainages and acres monitored through 2006. The same evaluations were used to determine whether the Coalition monitoring strategy is on track to complete the required monitoring. The monitored drainages included in these assessments include all Coalition sites monitored through 2006, sites monitored by coordinating partners (SRWP, UFRW, NECWA, and PCWG), and Regional Board monitoring in Coalition watershed drainages. The evaluations of current monitoring progress through 2006 are summarized in Table 5 for all drainages and in Table 6 for High and Medium priority drainages, which are the focus of the Coalition strategy. The evaluations of projected monitoring progress through 2007 are similarly summarized in Table 7 and Table 8.

The results of these evaluations validate the effectiveness of the original Coalition monitoring strategy. The Coalition’s prioritization process and monitoring strategy through 2006 has resulted in characterization of 50% of High and Medium priority drainages and 68% of High and Medium priority acreage for large and medium sized drainages with significant irrigated acreage (Table 6). This total breaks down to 44% of intermediate drainages, and 73% of large drainages in the High and Medium priorities. Although the original focus of the Coalition has been to characterize the largest percentage of irrigated acreage first, this strategy also successfully characterized a large proportion of intermediate drainages. These results demonstrate substantial progress towards completing the monitoring requirements of the R5-2005-0833 MRP.
The same analysis was applied to the projected monitoring progress at the end of 2007. After completion of this proposed monitoring plan, the Coalition and coordinating partners will have characterized of 72% of High and Medium priority drainages and 81% of High and Medium priority acreage for large and medium sized drainages with significant irrigated acreage. This total breaks down to 72% of intermediate drainages, and 73% of large drainages in the High and Medium priorities. After 2007, there will remain 11 unmonitored High or Medium priority intermediate drainages and 4 High or Medium priority large drainages. It is expected that monitoring for at least two or more of these will be completed by the Regional Board’s ILP monitoring effort in the next several years. That leaves approximately 8 or 9 different unmonitored intermediate drainages to monitor in 2008 and 2009 to complete the characterization of all High or Medium priority intermediate drainages. This clearly indicates that the Coalition monitoring strategy is on track to meet the stated monitoring requirements of the R5-2005-0833 MRP, and that no drastic changes in long-term strategy are required to meet these goals.

Table 5. Monitoring in drainages with >640 irrigated acres through 2006

<table>
<thead>
<tr>
<th>DRAINAGE SIZE CATEGORY</th>
<th>1 (SMALL)</th>
<th>2 (INT)</th>
<th>3 (LARGE)</th>
<th>Totals for drainages with >640 Irrigated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Individual Drainages, Acres</td>
<td>594,042</td>
<td>4,543,921</td>
<td>7,352,028</td>
<td>12,489,992</td>
</tr>
<tr>
<td>Total Number of Drainages</td>
<td>40</td>
<td>67</td>
<td>27</td>
<td>134</td>
</tr>
<tr>
<td>Percent of Drainages</td>
<td>30%</td>
<td>50%</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>Number of Drainages Monitored</td>
<td>3</td>
<td>20</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>Sum of Acres Monitored</td>
<td>41,374</td>
<td>1,417,649</td>
<td>4,164,093</td>
<td>5,623,116</td>
</tr>
</tbody>
</table>

Percent of Drainages Monitored

<table>
<thead>
<tr>
<th></th>
<th>8%</th>
<th>30%</th>
<th>44%</th>
<th>26%</th>
</tr>
</thead>
</table>

Percent of Acres Monitored

<table>
<thead>
<tr>
<th></th>
<th>7%</th>
<th>31%</th>
<th>57%</th>
<th>45%</th>
</tr>
</thead>
</table>
Table 6. Monitoring in High and Medium priority drainages through 2006

<table>
<thead>
<tr>
<th>DRAINAGE SIZE CATEGORY</th>
<th>1 (SMALL)</th>
<th>2 (INT)</th>
<th>3 (LARGE)</th>
<th>Total for All High and Medium Priority Drainages</th>
<th>Total for Lg and Int, High and Med Priority Drainages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of High or Medium Priority Drainages</td>
<td>34</td>
<td>39</td>
<td>15</td>
<td>88</td>
<td>54</td>
</tr>
<tr>
<td>Sum of Individual Drainages, Acres</td>
<td>451,328</td>
<td>2,633,096</td>
<td>4,867,618</td>
<td>7,952,041</td>
<td>7,500,713</td>
</tr>
<tr>
<td>Number of Drainages Monitored</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>Sum of Acres Monitored</td>
<td>41,374</td>
<td>1,151,564</td>
<td>3,950,319</td>
<td>5,143,257</td>
<td>5,101,883</td>
</tr>
<tr>
<td>Percent of Drainages Monitored</td>
<td>9%</td>
<td>41%</td>
<td>73%</td>
<td>34%</td>
<td>50%</td>
</tr>
<tr>
<td>Percent of Acres Monitored</td>
<td>9%</td>
<td>44%</td>
<td>81%</td>
<td>65%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Table 7. Monitoring in drainages with >640 irrigated acres, estimated for 2007

<table>
<thead>
<tr>
<th>DRAINAGE SIZE CATEGORY</th>
<th>1 (SMALL)</th>
<th>2 (INT)</th>
<th>3 (LARGE)</th>
<th>Totals for all drainages with >640 Irrigated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Individual Drainages, Acres</td>
<td>594,042</td>
<td>4,543,921</td>
<td>7,352,028</td>
<td>12,489,992</td>
</tr>
<tr>
<td>Total Number of Drainages</td>
<td>40</td>
<td>67</td>
<td>27</td>
<td>134</td>
</tr>
<tr>
<td>Percent of Drainages</td>
<td>30%</td>
<td>50%</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>Number of Drainages Monitored</td>
<td>3</td>
<td>34</td>
<td>12</td>
<td>49</td>
</tr>
<tr>
<td>Sum of Acres Monitored</td>
<td>41,374</td>
<td>2,551,649</td>
<td>4,164,093</td>
<td>6,757,116</td>
</tr>
<tr>
<td>Percent of Drainages Monitored</td>
<td>8%</td>
<td>51%</td>
<td>44%</td>
<td>37%</td>
</tr>
<tr>
<td>Percent of Acres Monitored</td>
<td>7%</td>
<td>56%</td>
<td>57%</td>
<td>54%</td>
</tr>
</tbody>
</table>

(1) Based on average intermediate drainage of 81,000 acres

Table 8. Monitoring in High and Medium priority drainages, estimated for 2007

<table>
<thead>
<tr>
<th>DRAINAGE SIZE CATEGORY</th>
<th>1 (SMALL)</th>
<th>2 (INT)</th>
<th>3 (LARGE)</th>
<th>Total for High and Medium Priority Drainages</th>
<th>Total for Lg and Int, High and Med Priority</th>
</tr>
</thead>
</table>

Page 7 of 13
<table>
<thead>
<tr>
<th>Total Number of High or Medium Priority Drainages</th>
<th>34</th>
<th>39</th>
<th>15</th>
<th>88</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Individual Drainages, Acres</td>
<td>451,328</td>
<td>2,633,096</td>
<td>4,867,618</td>
<td>7,952,041</td>
<td>7,500,713</td>
</tr>
<tr>
<td>Number of Drainages Monitored</td>
<td>3</td>
<td>28</td>
<td>11</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Est'd Sum of Acres Monitored(1)</td>
<td>41,374</td>
<td>2,123,564</td>
<td>3,950,319</td>
<td>6,115,257</td>
<td>6,073,883</td>
</tr>
<tr>
<td>Percent of Drainages Monitored</td>
<td>9%</td>
<td>72%</td>
<td>73%</td>
<td>48%</td>
<td>72%</td>
</tr>
<tr>
<td>Est'd Percent of Acres Monitored</td>
<td>9%</td>
<td>81%</td>
<td>81%</td>
<td>77%</td>
<td>81%</td>
</tr>
</tbody>
</table>

(1) Based on average intermediate drainage of 81,000 acres
RECOMMENDED MONITORING FOR 2007

The Coalition is submitting the following MRPP proposal for 2007. Thirteen new monitoring locations in unmonitored drainages will replace sites monitored in 2006 with completed Phase 2 monitoring. Candidate drainages for new monitoring locations were selected based on overall monitoring priorities and an increased focus on maximizing the number of Intermediate size drainages in 2007 to meet the requirements of the R5-2005-0833 MRP. The basis for making these monitoring recommendations for sites monitored in 2006 are provided in Table 9.

Table 9. Monitoring Recommendations for Sites Monitored by SVWQC in 2006

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Site</th>
<th>2007 Action and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ButteYubaSutter</td>
<td>Butte Slough at Pass Road</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No exceedances of objectives in 2006.</td>
</tr>
<tr>
<td>ButteYubaSutter</td>
<td>Gilsizer Slough at George Washington Road</td>
<td>Continue Phase 2 monitoring. Discontinue aquatic toxicity (no toxicity in 2006).</td>
</tr>
<tr>
<td>ButteYubaSutter</td>
<td>Pine Creek at Nord Gianella Road</td>
<td>Continue with selected analytes to support documentation of management practice effectiveness. 2 years of monitoring completed. No exceedances of objectives for Phase 2 parameters in 2006. E. coli exceedances addressed through regional Mgt Plan.</td>
</tr>
<tr>
<td>ButteYubaSutter</td>
<td>Wadsworth Canal at South Butte Rd</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No exceedances of objectives for Phase 2 parameters in 2006. E. coli exceedances addressed by regional Mgt Plan.</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Butte Creek at Gridley Rd Bridge</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No toxicity or exceedances of Phase 2 parameters. E. coli exceedances addressed by regional Mgt Plan.</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Colusa Drain near Maxwell Road</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No toxicity or exceedances of Phase 2 parameters. E. coli exceedances addressed by regional Mgt Plan.</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Rough and Ready Pumping Plant (RD 108)</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No toxicity or exceedances of Phase 2 parameters except DDE (n=2) in 2006. E. coli, TDS, and EC exceedances addressed by regional Mgt Plans.</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Stone Corral Creek near Maxwell Road</td>
<td>Exchange for new site in HIGH or MED priority intermediate drainage. Two years of monitoring completed. No toxicity or exceedances of Phase 2 parameters in 2006. E. coli exceedances addressed by regional Mgt Plan. Single EC/TDS exceedance.</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Stony Creek on Hwy 45 near Rd 24</td>
<td>Continue Aquatic toxicity, OP and triazine pesticides through 2007 Storm Season to address single simazine and diazinon exceedances observed in 2006. E. coli exceedances addressed by regional Mgt Plan. 2 years of monitoring completed.</td>
</tr>
<tr>
<td>ElDorado</td>
<td>North Canyon Creek</td>
<td>Continue monitoring for selected parameters at the North Canyon site for up to four sample events. No toxicity in 2006. Single DDE exceedance in 2006. No other Phase 2 exceedances in 2006. Add new site in LOW priority intermediate drainage (no other HIGH or MED priority drainages in subwatershed).</td>
</tr>
</tbody>
</table>
Subwatershed | Site | 2007 Action and Rationale
--- | --- | ---
LakeNapa | McGaugh Slough at Finley Road East | Exchange for new site at same frequency. 2 years of monitoring completed. No exceedances of Phase 2 parameters in 2006. E. coli exceedance(s) addressed through regional Mgt Plan.

Pit River | Pit River at Pittville | Continue all three sites in 2007;

| Site | Exchange for new site in MED priority intermediate drainage. There are no other unmonitored HIGH priority drainages in subwatershed. 2 years of monitoring completed. No exceedances of Phase 2 parameters in 2006. E. coli exceedance(s) addressed through regional Mgt Plan. Minor DO exceedance in 2006. |

Sacramento-Amador | Cosumnes River at Twin Cities Rd | Exchange for new site in HIGH or MED priority intermediate drainage. 2 years of monitoring completed. No exceedances or toxicity in 2006.

Sacramento-Amador | Dry Creek at Alta Mesa Road | Implement Phase 2 monitoring. Continue Ceriodaphnia through storm season only (toxicity observed in 2006 Storm season). Discontinue Ceriodaphnia beginning irrigation season (no toxicity observed in 2006 Irr.Season).

Shasta-Tehama | Anderson Creek at Ash Creek Road | Continue Phase 2 monitoring. Discontinue toxicity testing (no significant toxicity observed in 2006). No exceedances of Phase 2 parameters in 2006. E. coli exceedance(s) addressed through regional Mgt Plan.

Shasta-Tehama | Burch Creek at Rawson Road | Exchange for new site in HIGH or MED priority intermediate drainage. 2 years of monitoring completed. No toxicity or chemical exceedances observed at Rawson Road location.

SolanoYolo | Shag Slough at Liberty Island Bridge | Continue monitoring as long-term integrator site. Include aquatic and sediment toxicity, 303d parameters for Delta (OP pesticides in water, OC and pyrethroids in sediment) and trace metals with exceedances or active management plan (boron only).

SolanoYolo | Tule Canal at I-80 | Exchange for new site in HIGH or MED priority intermediate drainage. >2 years of monitoring completed. No exceedances of objectives for Phase 2 parameters except boron. Exceedances of E. coli, EC, TDS, and boron addressed through regional Mgt Plan.

SolanoYolo | Ulatis Creek at Brown Road | Continue with Phase 2 monitoring. Continue detected pesticides and add remaining Phase 2 parameters. Continue Ceriodaphnia through Storm Season to address chlorpyrifos and diazinon exceedances. Continue Selenastrum through storm season to address Selenastrum toxicity observed in Storm Season 2006.

SolanoYolo | Z Drain - Dixon RCD | Exchange for new site in HIGH or MED priority intermediate drainage. 2 years of monitoring completed. No toxicity in 2006. No exceedances of objectives for Phase 2 parameters except selenium (1 exceedance, no downstream or regional selenium problems) and boron. Exceedances of E. coli, EC, TDS, and boron addressed through regional Mgt Plan.

UpperFeatherRiver | Indian Creek at Arlington Bridge | Continued Phase 2 monitoring by UFRW. No toxicity observed in 2006, no pesticides monitored unless toxicity observed. Implement sediment toxicity testing in 2007.

UpperFeatherRiver | Middle Fork Feather River at County Rd A-23 | Continued Phase 2 monitoring by UFRW. No toxicity observed in 2006, no pesticides monitored unless toxicity observed. Implement sediment toxicity testing in 2007.

UpperFeatherRiver | Spanish Creek below confluence with Greenhorn Creek | Continued Phase 2 monitoring by UFRW. No toxicity observed in 2006, no pesticides monitored unless toxicity observed. Implement sediment toxicity testing in 2007.
New Monitoring Drainages and Sites

The Coalition is proposing to move to thirteen new monitoring sites in unmonitored drainages at which concurrent Phase 1 and Phase 2 testing (water column and sediment toxicity, drinking water constituents, pesticides, nutrients, trace metals, and general physical parameters) will commence in Storm Season 2007 and continue throughout the 2007 irrigation season. Sites in these new drainages will be selected in coordination with the Coalition’s subwatershed representatives in October, 2006. New drainages were initially selected from the list of highest priority drainages in each subwatershed that have not yet been monitored by the Coalition (Table 10). Additional sites were also considered based on coordination with planned management practice studies. Specific monitoring sites selected for 2007 monitoring are listed in Table 11. A summary of monitoring planned by the Coalition and coordinating partners is provided in Table 12.

Table 10. Candidate Drainages for New Monitoring Sites in 2007

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th># of Replacement Sites</th>
<th>Candidate Drainages</th>
<th>Monitoring Priority</th>
<th>Drainage Size Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butte-Sutter-Yuba</td>
<td>3</td>
<td>Cherokee Canal</td>
<td>1 HIGH</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grasshopper Slough</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jack Slough</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Honcut Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Oroville</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Snake</td>
<td>1 HIGH</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RD 1500</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Colusa Basin</td>
<td>4</td>
<td>Buckeye Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freshwater Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logan Creek</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lurline Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orland Area</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand Creek - Colusa</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow Creek</td>
<td>1 HIGH</td>
<td>Large</td>
</tr>
<tr>
<td>El Dorado</td>
<td>1</td>
<td>Middle Fork Cosumnes River</td>
<td>3 LOW</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Lake-Napa</td>
<td>1</td>
<td>Lower Lake</td>
<td>3 LOW</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Lake</td>
<td>3 LOW</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Placer N Sac</td>
<td>1</td>
<td>Coon Creek - Auburn</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle Coon Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleasant Grove Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Sac-Amador</td>
<td>1</td>
<td>Elder Creek - Sacramento</td>
<td>1 HIGH</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle Cosumnes</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sacramento Delta</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Shasta-Tehama</td>
<td>1</td>
<td>Cow Creek</td>
<td>2 MED</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coyote Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elder Creek</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salt Creek</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Solano-Yolo</td>
<td>2</td>
<td>Cache Creek</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Putah Creek South</td>
<td>2 MED</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow Slough</td>
<td>1 HIGH</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11. Coalition Monitoring Sites, 2007

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Implementing Agency</th>
<th>Map Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>ButteYubaSutter</td>
<td>Pine Creek at Nord Gianella Road</td>
<td>39.7811</td>
<td>-121.9877</td>
<td>SVWQC</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Sacramento Slough</td>
<td>38.7833</td>
<td>-121.6338</td>
<td>SRWP</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Gilsizer Slough at George Washington Road</td>
<td>39.0090</td>
<td>-121.6716</td>
<td>SVWQC</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Grasshopper Slough at Forty Mile Road</td>
<td>38.9938</td>
<td>-121.4898</td>
<td>SVWQC</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Lower Snake R. at Nuestro Rd</td>
<td>39.1853</td>
<td>-121.7036</td>
<td>SVWQC</td>
<td>40</td>
</tr>
<tr>
<td>ColusaBasin</td>
<td>Stony Creek on Hwy 45 near Rd 24</td>
<td>39.7101</td>
<td>-122.0040</td>
<td>SVWQC</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Colusa Basin Drain above KL</td>
<td>38.8121</td>
<td>-121.7741</td>
<td>SRWP</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Freshwater Creek at Gibson Rd</td>
<td>39.1766</td>
<td>-122.1892</td>
<td>SVWQC</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Logan Creek at 4 Mile-Excelsior Rd</td>
<td>39.3653</td>
<td>-122.1161</td>
<td>SVWQC</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Lurline Creek at 99W</td>
<td>39.2122</td>
<td>-122.1833</td>
<td>SVWQC</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Walker Creek at Co Rd 48</td>
<td>39.5388</td>
<td>-122.1762</td>
<td>SVWQC</td>
<td>44</td>
</tr>
<tr>
<td>ElDorado</td>
<td>North Canyon Creek</td>
<td>38.7604</td>
<td>-120.7102</td>
<td>SVWQC</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Coon Hollow Creek</td>
<td>38.7534</td>
<td>-120.7240</td>
<td>SVWQC</td>
<td>45</td>
</tr>
<tr>
<td>LakeNapa</td>
<td>Pope Creek upstream from Lake Berryessa</td>
<td>38.6464</td>
<td>-122.3642</td>
<td>PCWG</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Capell Creek u/s from Lake Berryessa</td>
<td>38.4825</td>
<td>-122.2411</td>
<td>PCWG</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Middle Creek u/s from Highway 20</td>
<td>39.1635</td>
<td>-122.9161</td>
<td>SVWQC</td>
<td>38</td>
</tr>
<tr>
<td>PitRiver</td>
<td>Pit River at Pittville</td>
<td>41.0454</td>
<td>-121.3317</td>
<td>NECWA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fall River at Fall River Ranch Bridge</td>
<td>41.0351</td>
<td>-121.4864</td>
<td>NECWA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pit River at Canby Bridge</td>
<td>41.4017</td>
<td>-120.9310</td>
<td>NECWA</td>
<td>3</td>
</tr>
<tr>
<td>Placer-Nevada-SSutter-NSac.</td>
<td>Coon Creek at Brewer Road</td>
<td>38.9340</td>
<td>-121.4518</td>
<td>SVWQC</td>
<td>46</td>
</tr>
<tr>
<td>SacramentoAmador</td>
<td>Dry Creek at Alta Mesa Road</td>
<td>38.2480</td>
<td>-121.2260</td>
<td>SVWQC</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Laguna Creek at Alta Mesa Road</td>
<td>38.3110</td>
<td>-121.2263</td>
<td>SVWQC</td>
<td>47</td>
</tr>
<tr>
<td>ShastaTehama</td>
<td>Anderson Creek at Ash Creek Road</td>
<td>40.4180</td>
<td>-122.2136</td>
<td>SVWQC</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Coyote Creek at Tyler Road</td>
<td>40.0926</td>
<td>-122.1590</td>
<td>SVWQC</td>
<td>48</td>
</tr>
<tr>
<td>SolanoYolo</td>
<td>Willow Slough Bypass at SP</td>
<td>38.5994</td>
<td>-121.7528</td>
<td>SVWQC</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Cache Cr. at Diversion Dam</td>
<td>38.7137</td>
<td>-122.0851</td>
<td>SVWQC</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Shag Slough at Liberty Island Bridge</td>
<td>38.3068</td>
<td>-121.6934</td>
<td>SVWQC</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Ulatis Creek at Brown Road</td>
<td>38.3070</td>
<td>-121.7940</td>
<td>SVWQC</td>
<td>32</td>
</tr>
<tr>
<td>UpperFeatherRiver</td>
<td>Middle Fork Feather River at County Rd A-23</td>
<td>39.8189</td>
<td>-120.3918</td>
<td>UFRW</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Indian Creek at Arlington Bridge</td>
<td>40.0846</td>
<td>-120.9161</td>
<td>UFRW</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Spanish Creek below Greenhorn Creek</td>
<td>39.9735</td>
<td>-120.9103</td>
<td>UFRW</td>
<td>37</td>
</tr>
<tr>
<td>Subwatershed</td>
<td>Location</td>
<td>Physical, Chemical, and Microbiological</td>
<td>Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butte-Sutter-Yuba</td>
<td>Grasshopper Sl. at Forty Mile Rd</td>
<td>pH, conductivity, Q</td>
<td>Ceriodaphnia, 96-h short-term chronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color, Turbidity, TDS, TSS, TOC</td>
<td>Cereulystine, 96-h short-term chronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trace metals</td>
<td>Pathogen Indicators: E. Coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organophosphate pesticides</td>
<td>Pathogen Indicators: Ceramiosporium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triazines</td>
<td>Pathogen Indicators: Microspora</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organonochlorines</td>
<td>Pathogen Indicators: Ureaplan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyrethroids in toxic sediments</td>
<td>Pathogen Indicators: Alkalobacter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glyphosate</td>
<td>Pathogen Indicators: Staphylococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paraquat</td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbamate and Urea Pesticides</td>
<td>Pathogen Indicators: Legionella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Pseudomonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Escherichia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Proteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Aeromonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Shewan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Salmonella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Vibrion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pathogen Indicators: Bacillus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Tabled values indicate number of regular samples planned for 2007. “ns” indicates parameters are not sampled. Implementation indicates whether monitoring is conducted by the Coalition (SVWQC), Northeastern California Water Association (NECWA), Lake County, Putah Creek Watershed Group (PCWG), Upper Feather River Watershed Prop 50 Project Team (UFRW) or Sacramento River Watershed Program (SRWP).